{"title":"宿主介导的选择驱动了银杏雌雄异株活化石中微生物群组装的两性二态性。","authors":"Chen-Feng Lin,Jun-Jie Wu,Yun-Peng Zhao","doi":"10.1111/nph.70591","DOIUrl":null,"url":null,"abstract":"Dioecious plants harbor sexually dimorphic microbiota that enhance their reproductive success. However, the spatial and temporal patterns, particularly the ecological processes underlying the sexual dimorphism of plant microbiota assembly, remain largely unknown. We investigated the bacterial and fungal communities in 180 samples collected from male and female trees of Ginkgo biloba across three niches and three developmental stages, quantifying the relative importance of host-mediated selection to assess the role of host sex in microbiota assembly. Our results revealed significant filtering of ginkgo microbiota along the soil-root-leaf continuum, as well as dynamic shifts throughout the annual growth cycle of the host. Male and female hosts exerted differential selection on specific microbial taxa, leading to sexually dimorphic microbiota compositions with spatiotemporal variations. Chemoheterotrophic bacteria were enriched in male leaves during the flowering stage, whereas pathogenic and saprotrophic fungi were depleted in female trees during the seed set stage. Host-mediated selection on specific microbial functional groups drives the sexual dimorphism of microbiota assembly, aligning with sex-specific reproductive and adaptive strategies. Our findings reveal a dynamic connection between plant sex and microbiota function in long-lived woody plants, and lay a foundation for future microbiome-assisted conservation of dioecious species.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"76 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host-mediated selection drives sexual dimorphism of microbiota assembly in the dioecious living fossil Ginkgo biloba.\",\"authors\":\"Chen-Feng Lin,Jun-Jie Wu,Yun-Peng Zhao\",\"doi\":\"10.1111/nph.70591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dioecious plants harbor sexually dimorphic microbiota that enhance their reproductive success. However, the spatial and temporal patterns, particularly the ecological processes underlying the sexual dimorphism of plant microbiota assembly, remain largely unknown. We investigated the bacterial and fungal communities in 180 samples collected from male and female trees of Ginkgo biloba across three niches and three developmental stages, quantifying the relative importance of host-mediated selection to assess the role of host sex in microbiota assembly. Our results revealed significant filtering of ginkgo microbiota along the soil-root-leaf continuum, as well as dynamic shifts throughout the annual growth cycle of the host. Male and female hosts exerted differential selection on specific microbial taxa, leading to sexually dimorphic microbiota compositions with spatiotemporal variations. Chemoheterotrophic bacteria were enriched in male leaves during the flowering stage, whereas pathogenic and saprotrophic fungi were depleted in female trees during the seed set stage. Host-mediated selection on specific microbial functional groups drives the sexual dimorphism of microbiota assembly, aligning with sex-specific reproductive and adaptive strategies. Our findings reveal a dynamic connection between plant sex and microbiota function in long-lived woody plants, and lay a foundation for future microbiome-assisted conservation of dioecious species.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.70591\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70591","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Host-mediated selection drives sexual dimorphism of microbiota assembly in the dioecious living fossil Ginkgo biloba.
Dioecious plants harbor sexually dimorphic microbiota that enhance their reproductive success. However, the spatial and temporal patterns, particularly the ecological processes underlying the sexual dimorphism of plant microbiota assembly, remain largely unknown. We investigated the bacterial and fungal communities in 180 samples collected from male and female trees of Ginkgo biloba across three niches and three developmental stages, quantifying the relative importance of host-mediated selection to assess the role of host sex in microbiota assembly. Our results revealed significant filtering of ginkgo microbiota along the soil-root-leaf continuum, as well as dynamic shifts throughout the annual growth cycle of the host. Male and female hosts exerted differential selection on specific microbial taxa, leading to sexually dimorphic microbiota compositions with spatiotemporal variations. Chemoheterotrophic bacteria were enriched in male leaves during the flowering stage, whereas pathogenic and saprotrophic fungi were depleted in female trees during the seed set stage. Host-mediated selection on specific microbial functional groups drives the sexual dimorphism of microbiota assembly, aligning with sex-specific reproductive and adaptive strategies. Our findings reveal a dynamic connection between plant sex and microbiota function in long-lived woody plants, and lay a foundation for future microbiome-assisted conservation of dioecious species.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.