Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny Jj Wang
{"title":"7 T高分辨率4D脑血容量MRI评估脑微血管容量。","authors":"Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny Jj Wang","doi":"10.1038/s44161-025-00722-1","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing cerebral microvascular volumetric with high-resolution 4D cerebral blood volume MRI at 7 T.\",\"authors\":\"Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny Jj Wang\",\"doi\":\"10.1038/s44161-025-00722-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-025-00722-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00722-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Assessing cerebral microvascular volumetric with high-resolution 4D cerebral blood volume MRI at 7 T.
Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases.