利用全细胞模型和机器学习加速设计大肠杆菌减少基因组。

IF 7.7
Ioana M Gherman, Kieren Sharma, Joshua Rees-Garbutt, Wei Pang, Zahraa S Abdallah, Thomas E Gorochowski, Claire S Grierson, Lucia Marucci
{"title":"利用全细胞模型和机器学习加速设计大肠杆菌减少基因组。","authors":"Ioana M Gherman, Kieren Sharma, Joshua Rees-Garbutt, Wei Pang, Zahraa S Abdallah, Thomas E Gorochowski, Claire S Grierson, Lucia Marucci","doi":"10.1016/j.cels.2025.101392","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-cell models (WCMs) are multi-scale computational models that aim to simulate the function of all genes and processes within a cell. This approach is promising for designing genomes tailored for specific tasks. However, a limitation of WCMs is their long runtime. Here, we show how machine learning (ML) surrogates can be used to address this limitation by training them on WCM data to accurately predict cell division. Our ML surrogate achieves a 95% reduction in computational time compared with the original WCM. We then show that the surrogate and a genome-design algorithm can generate an in silico-reduced E. coli cell, where 40% of the genes included in the WCM were removed. The reduced genome is validated using the WCM and interpreted biologically using Gene Ontology analysis. This approach illustrates how the holistic understanding gained from a WCM can be leveraged for synthetic biology tasks while reducing runtime. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101392"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated design of Escherichia coli reduced genomes using a whole-cell model and machine learning.\",\"authors\":\"Ioana M Gherman, Kieren Sharma, Joshua Rees-Garbutt, Wei Pang, Zahraa S Abdallah, Thomas E Gorochowski, Claire S Grierson, Lucia Marucci\",\"doi\":\"10.1016/j.cels.2025.101392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whole-cell models (WCMs) are multi-scale computational models that aim to simulate the function of all genes and processes within a cell. This approach is promising for designing genomes tailored for specific tasks. However, a limitation of WCMs is their long runtime. Here, we show how machine learning (ML) surrogates can be used to address this limitation by training them on WCM data to accurately predict cell division. Our ML surrogate achieves a 95% reduction in computational time compared with the original WCM. We then show that the surrogate and a genome-design algorithm can generate an in silico-reduced E. coli cell, where 40% of the genes included in the WCM were removed. The reduced genome is validated using the WCM and interpreted biologically using Gene Ontology analysis. This approach illustrates how the holistic understanding gained from a WCM can be leveraged for synthetic biology tasks while reducing runtime. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101392\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全细胞模型(WCMs)是多尺度计算模型,旨在模拟细胞内所有基因和过程的功能。这种方法有望设计出适合特定任务的基因组。然而,wcm的一个限制是运行时间过长。在这里,我们展示了机器学习(ML)替代品如何通过在WCM数据上训练它们来准确预测细胞分裂,从而解决这一限制。与原始WCM相比,我们的ML代理实现了95%的计算时间减少。然后,我们展示了替代物和基因组设计算法可以产生一个硅还原的大肠杆菌细胞,其中40%的WCM中包含的基因被去除。使用WCM验证减少的基因组,并使用基因本体分析进行生物学解释。这种方法说明了如何利用从WCM获得的整体理解来完成合成生物学任务,同时减少运行时间。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated design of Escherichia coli reduced genomes using a whole-cell model and machine learning.

Whole-cell models (WCMs) are multi-scale computational models that aim to simulate the function of all genes and processes within a cell. This approach is promising for designing genomes tailored for specific tasks. However, a limitation of WCMs is their long runtime. Here, we show how machine learning (ML) surrogates can be used to address this limitation by training them on WCM data to accurately predict cell division. Our ML surrogate achieves a 95% reduction in computational time compared with the original WCM. We then show that the surrogate and a genome-design algorithm can generate an in silico-reduced E. coli cell, where 40% of the genes included in the WCM were removed. The reduced genome is validated using the WCM and interpreted biologically using Gene Ontology analysis. This approach illustrates how the holistic understanding gained from a WCM can be leveraged for synthetic biology tasks while reducing runtime. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信