通过生成式深度学习识别最佳扰动以诱导所需的细胞状态。

IF 7.7
Younghyun Han, Hyunjin Kim, Chun-Kyung Lee, Kwang-Hyun Cho
{"title":"通过生成式深度学习识别最佳扰动以诱导所需的细胞状态。","authors":"Younghyun Han, Hyunjin Kim, Chun-Kyung Lee, Kwang-Hyun Cho","doi":"10.1016/j.cels.2025.101405","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling cell states is pivotal in biological research, yet understanding the specific perturbations that induce desired changes remains challenging. To address this, we present PAIRING (perturbation identifier to induce desired cell states using generative deep learning), which identifies cellular perturbations leading to the desired cell state. PAIRING embeds cell states in the latent space and decomposes them into basal states and perturbation effects. The identification of optimal perturbations is achieved by comparing the decomposed perturbation effects with the vector representing the transition toward the desired cell state in the latent space. We demonstrate that PAIRING can identify perturbations transforming given cell states into desired states across different types of transcriptome datasets. PAIRING is employed to identify perturbations that lead colorectal cancer cells to a normal-like state. Moreover, simulating gene expression changes using PAIRING provides mechanistic insights into the perturbation. We anticipate that it will have a broad impact on therapeutic development, potentially applicable across various biological domains.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101405"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying an optimal perturbation to induce a desired cell state by generative deep learning.\",\"authors\":\"Younghyun Han, Hyunjin Kim, Chun-Kyung Lee, Kwang-Hyun Cho\",\"doi\":\"10.1016/j.cels.2025.101405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Controlling cell states is pivotal in biological research, yet understanding the specific perturbations that induce desired changes remains challenging. To address this, we present PAIRING (perturbation identifier to induce desired cell states using generative deep learning), which identifies cellular perturbations leading to the desired cell state. PAIRING embeds cell states in the latent space and decomposes them into basal states and perturbation effects. The identification of optimal perturbations is achieved by comparing the decomposed perturbation effects with the vector representing the transition toward the desired cell state in the latent space. We demonstrate that PAIRING can identify perturbations transforming given cell states into desired states across different types of transcriptome datasets. PAIRING is employed to identify perturbations that lead colorectal cancer cells to a normal-like state. Moreover, simulating gene expression changes using PAIRING provides mechanistic insights into the perturbation. We anticipate that it will have a broad impact on therapeutic development, potentially applicable across various biological domains.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101405\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

控制细胞状态在生物学研究中至关重要,但理解引起期望变化的特定扰动仍然具有挑战性。为了解决这个问题,我们提出了pair(使用生成式深度学习诱导所需细胞状态的扰动标识符),它识别导致所需细胞状态的细胞扰动。配对将细胞状态嵌入到潜在空间中,并将其分解为基态和摄动效应。最优扰动的识别是通过将分解的扰动效应与表示向潜在空间中期望细胞状态过渡的向量进行比较来实现的。我们证明,配对可以识别在不同类型的转录组数据集中将给定细胞状态转化为所需状态的扰动。使用配对来识别导致结直肠癌细胞进入正常状态的扰动。此外,使用配对模拟基因表达变化提供了对扰动的机制见解。我们预计它将对治疗发展产生广泛的影响,可能适用于各种生物学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying an optimal perturbation to induce a desired cell state by generative deep learning.

Controlling cell states is pivotal in biological research, yet understanding the specific perturbations that induce desired changes remains challenging. To address this, we present PAIRING (perturbation identifier to induce desired cell states using generative deep learning), which identifies cellular perturbations leading to the desired cell state. PAIRING embeds cell states in the latent space and decomposes them into basal states and perturbation effects. The identification of optimal perturbations is achieved by comparing the decomposed perturbation effects with the vector representing the transition toward the desired cell state in the latent space. We demonstrate that PAIRING can identify perturbations transforming given cell states into desired states across different types of transcriptome datasets. PAIRING is employed to identify perturbations that lead colorectal cancer cells to a normal-like state. Moreover, simulating gene expression changes using PAIRING provides mechanistic insights into the perturbation. We anticipate that it will have a broad impact on therapeutic development, potentially applicable across various biological domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信