{"title":"苍蝇视叶的差分时域滤波。","authors":"Alexander Borst","doi":"10.1007/s10827-025-00914-5","DOIUrl":null,"url":null,"abstract":"<p><p>Visual interneurons come in many different flavors, representing luminance changes at one location as ON or OFF signals with different dynamics, ranging from purely sustained to sharply transient responses. While the functional relevance of this representation for subsequent computations like direction-selective motion detection is well understood, the mechanisms by which these differences in dynamics arise are unclear. Here, I study this question in the fly optic lobe. Taking advantage of the known connectome I simulate a network of five adjacent optical columns each comprising 65 different cell types. Each neuron is modeled as an electrically compact single compartment, conductance-based element that receives input from other neurons within its column and from its neighboring columns according to the intra- and inter-columnar connectivity matrix. The sign of the input is determined according to the known transmitter type of the presynaptic neuron and the receptor on the postsynaptic side. In addition, some of the neurons are given voltage-dependent conductances known from the fly transcriptome. As free parameters, each neuron has an input and an output gain, applied to all its input and output synapses, respectively. The parameters are adjusted such that the spatio-temporal receptive field properties of 13 out of the 65 simulated neurons match the experimentally determined ones as closely as possible. Despite the fact that all neurons have identical leak conductance and membrane capacitance, this procedure leads to a surprisingly good fit to the data, where specific neurons respond transiently while others respond in a sustained way to luminance changes. This fit critically depends on the presence of an H-current in some of the first-order interneurons, i.e., lamina cells L1 and L2: turning off the H-current eliminates the transient response nature of many neurons leaving only sustained responses in all of the examined interneurons. I conclude that the diverse dynamic response behavior of the columnar neurons in the fly optic lobe starts in the lamina and is created by their different intrinsic membrane properties. I predict that eliminating the hyperpolarization-activated current by RNAi should strongly affect the dynamics of many medulla neurons and, consequently, also higher-order functions depending on them like direction-selectivity in T4 and T5 neurons.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential temporal filtering in the fly optic lobe.\",\"authors\":\"Alexander Borst\",\"doi\":\"10.1007/s10827-025-00914-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual interneurons come in many different flavors, representing luminance changes at one location as ON or OFF signals with different dynamics, ranging from purely sustained to sharply transient responses. While the functional relevance of this representation for subsequent computations like direction-selective motion detection is well understood, the mechanisms by which these differences in dynamics arise are unclear. Here, I study this question in the fly optic lobe. Taking advantage of the known connectome I simulate a network of five adjacent optical columns each comprising 65 different cell types. Each neuron is modeled as an electrically compact single compartment, conductance-based element that receives input from other neurons within its column and from its neighboring columns according to the intra- and inter-columnar connectivity matrix. The sign of the input is determined according to the known transmitter type of the presynaptic neuron and the receptor on the postsynaptic side. In addition, some of the neurons are given voltage-dependent conductances known from the fly transcriptome. As free parameters, each neuron has an input and an output gain, applied to all its input and output synapses, respectively. The parameters are adjusted such that the spatio-temporal receptive field properties of 13 out of the 65 simulated neurons match the experimentally determined ones as closely as possible. Despite the fact that all neurons have identical leak conductance and membrane capacitance, this procedure leads to a surprisingly good fit to the data, where specific neurons respond transiently while others respond in a sustained way to luminance changes. This fit critically depends on the presence of an H-current in some of the first-order interneurons, i.e., lamina cells L1 and L2: turning off the H-current eliminates the transient response nature of many neurons leaving only sustained responses in all of the examined interneurons. I conclude that the diverse dynamic response behavior of the columnar neurons in the fly optic lobe starts in the lamina and is created by their different intrinsic membrane properties. I predict that eliminating the hyperpolarization-activated current by RNAi should strongly affect the dynamics of many medulla neurons and, consequently, also higher-order functions depending on them like direction-selectivity in T4 and T5 neurons.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-025-00914-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00914-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Differential temporal filtering in the fly optic lobe.
Visual interneurons come in many different flavors, representing luminance changes at one location as ON or OFF signals with different dynamics, ranging from purely sustained to sharply transient responses. While the functional relevance of this representation for subsequent computations like direction-selective motion detection is well understood, the mechanisms by which these differences in dynamics arise are unclear. Here, I study this question in the fly optic lobe. Taking advantage of the known connectome I simulate a network of five adjacent optical columns each comprising 65 different cell types. Each neuron is modeled as an electrically compact single compartment, conductance-based element that receives input from other neurons within its column and from its neighboring columns according to the intra- and inter-columnar connectivity matrix. The sign of the input is determined according to the known transmitter type of the presynaptic neuron and the receptor on the postsynaptic side. In addition, some of the neurons are given voltage-dependent conductances known from the fly transcriptome. As free parameters, each neuron has an input and an output gain, applied to all its input and output synapses, respectively. The parameters are adjusted such that the spatio-temporal receptive field properties of 13 out of the 65 simulated neurons match the experimentally determined ones as closely as possible. Despite the fact that all neurons have identical leak conductance and membrane capacitance, this procedure leads to a surprisingly good fit to the data, where specific neurons respond transiently while others respond in a sustained way to luminance changes. This fit critically depends on the presence of an H-current in some of the first-order interneurons, i.e., lamina cells L1 and L2: turning off the H-current eliminates the transient response nature of many neurons leaving only sustained responses in all of the examined interneurons. I conclude that the diverse dynamic response behavior of the columnar neurons in the fly optic lobe starts in the lamina and is created by their different intrinsic membrane properties. I predict that eliminating the hyperpolarization-activated current by RNAi should strongly affect the dynamics of many medulla neurons and, consequently, also higher-order functions depending on them like direction-selectivity in T4 and T5 neurons.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.