Alice Franklin, Jonathan P Davies, Nicholas E Clifton, Georgina E T Blake, Rosemary Bamford, Emma M Walker, Barry Chioza, Martyn Frith, Joe Burrage, Nick Owens, Shyam Prabhakar, Emma Dempster, Eilis Hannon, Jonathan Mill
{"title":"产前和产后人类皮层细胞类型特异性DNA甲基化动力学。","authors":"Alice Franklin, Jonathan P Davies, Nicholas E Clifton, Georgina E T Blake, Rosemary Bamford, Emma M Walker, Barry Chioza, Martyn Frith, Joe Burrage, Nick Owens, Shyam Prabhakar, Emma Dempster, Eilis Hannon, Jonathan Mill","doi":"10.1016/j.xgen.2025.101010","DOIUrl":null,"url":null,"abstract":"<p><p>The human cortex undergoes extensive epigenetic remodeling during development, although the precise temporal and cell-type-specific dynamics of DNA methylation remain incompletely understood. In this study, we profiled genome-wide DNA methylation across human cortex tissue from donors aged 6 post-conception weeks to 108 years of age. We observed widespread, developmentally regulated changes in DNA methylation, with pronounced shifts occurring during early- and mid-gestation that were distinct from age-associated modifications in the postnatal cortex. Using fluorescence-activated nuclei sorting, we optimized a protocol for the isolation of SATB2-positive neuronal nuclei, enabling the identification of cell-type-specific DNA methylation trajectories in the developing cortex. Developmentally dynamic DNA methylation sites were significantly enriched near genes implicated in autism and schizophrenia, supporting a role for epigenetic dysregulation in neurodevelopmental conditions. Our findings underscore the prenatal period as a critical window of epigenomic plasticity in the brain with important implications for understanding the genetic basis of neurodevelopmental phenotypes.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"101010"},"PeriodicalIF":11.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-type-specific DNA methylation dynamics in the prenatal and postnatal human cortex.\",\"authors\":\"Alice Franklin, Jonathan P Davies, Nicholas E Clifton, Georgina E T Blake, Rosemary Bamford, Emma M Walker, Barry Chioza, Martyn Frith, Joe Burrage, Nick Owens, Shyam Prabhakar, Emma Dempster, Eilis Hannon, Jonathan Mill\",\"doi\":\"10.1016/j.xgen.2025.101010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human cortex undergoes extensive epigenetic remodeling during development, although the precise temporal and cell-type-specific dynamics of DNA methylation remain incompletely understood. In this study, we profiled genome-wide DNA methylation across human cortex tissue from donors aged 6 post-conception weeks to 108 years of age. We observed widespread, developmentally regulated changes in DNA methylation, with pronounced shifts occurring during early- and mid-gestation that were distinct from age-associated modifications in the postnatal cortex. Using fluorescence-activated nuclei sorting, we optimized a protocol for the isolation of SATB2-positive neuronal nuclei, enabling the identification of cell-type-specific DNA methylation trajectories in the developing cortex. Developmentally dynamic DNA methylation sites were significantly enriched near genes implicated in autism and schizophrenia, supporting a role for epigenetic dysregulation in neurodevelopmental conditions. Our findings underscore the prenatal period as a critical window of epigenomic plasticity in the brain with important implications for understanding the genetic basis of neurodevelopmental phenotypes.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"101010\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.101010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.101010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cell-type-specific DNA methylation dynamics in the prenatal and postnatal human cortex.
The human cortex undergoes extensive epigenetic remodeling during development, although the precise temporal and cell-type-specific dynamics of DNA methylation remain incompletely understood. In this study, we profiled genome-wide DNA methylation across human cortex tissue from donors aged 6 post-conception weeks to 108 years of age. We observed widespread, developmentally regulated changes in DNA methylation, with pronounced shifts occurring during early- and mid-gestation that were distinct from age-associated modifications in the postnatal cortex. Using fluorescence-activated nuclei sorting, we optimized a protocol for the isolation of SATB2-positive neuronal nuclei, enabling the identification of cell-type-specific DNA methylation trajectories in the developing cortex. Developmentally dynamic DNA methylation sites were significantly enriched near genes implicated in autism and schizophrenia, supporting a role for epigenetic dysregulation in neurodevelopmental conditions. Our findings underscore the prenatal period as a critical window of epigenomic plasticity in the brain with important implications for understanding the genetic basis of neurodevelopmental phenotypes.