Michael B Clark, Alexander T Funk, Alex Paporakis, Gregory P Brown, Samuel J Beach, Aidan Tay, Stephanie Deering, Caitlin Cooper, Mark Tizard, Chris J Jolly, Georgia Ward-Fear, Anthony W Waddle, Richard Shine, Maciej Maselko
{"title":"高效crispr - cas9介导的甘蔗蟾蜍基因组编辑","authors":"Michael B Clark, Alexander T Funk, Alex Paporakis, Gregory P Brown, Samuel J Beach, Aidan Tay, Stephanie Deering, Caitlin Cooper, Mark Tizard, Chris J Jolly, Georgia Ward-Fear, Anthony W Waddle, Richard Shine, Maciej Maselko","doi":"10.1177/25731599251382427","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive species inflict major ecological, economic, and cultural harm worldwide, highlighting the urgent need for innovative control strategies. Genome editing offers exciting possibilities for targeted control methods for invasive species. Here, we demonstrate CRISPR-Cas9 genome editing in the cane toad (<i>Rhinella marina</i>), one of Australia's most notorious invasive species, by targeting the <i>tyrosinase</i> gene to produce albino phenotypes as visual markers for assessing editing efficiency. Microinjection of Cas9 protein and guide RNAs into one-cell zygotes resulted in 87.6% of mosaic larvae displaying nearly complete albinism, with 2.3% exhibiting complete albinism. For completely albino individuals, genomic analysis confirmed predominantly frameshift mutations or large deletions at the target site, with no wild-type alleles detected. Germline transmission rates reflected the extent of albinism in the mosaic adult, with maternal transmission approaching 100%. This first application of CRISPR-Cas9 in the Bufonidae family opens possibilities for exploring basic research questions and population control strategies.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient CRISPR-Cas9-Mediated Genome Editing of the Cane Toad (<i>Rhinella marina</i>).\",\"authors\":\"Michael B Clark, Alexander T Funk, Alex Paporakis, Gregory P Brown, Samuel J Beach, Aidan Tay, Stephanie Deering, Caitlin Cooper, Mark Tizard, Chris J Jolly, Georgia Ward-Fear, Anthony W Waddle, Richard Shine, Maciej Maselko\",\"doi\":\"10.1177/25731599251382427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive species inflict major ecological, economic, and cultural harm worldwide, highlighting the urgent need for innovative control strategies. Genome editing offers exciting possibilities for targeted control methods for invasive species. Here, we demonstrate CRISPR-Cas9 genome editing in the cane toad (<i>Rhinella marina</i>), one of Australia's most notorious invasive species, by targeting the <i>tyrosinase</i> gene to produce albino phenotypes as visual markers for assessing editing efficiency. Microinjection of Cas9 protein and guide RNAs into one-cell zygotes resulted in 87.6% of mosaic larvae displaying nearly complete albinism, with 2.3% exhibiting complete albinism. For completely albino individuals, genomic analysis confirmed predominantly frameshift mutations or large deletions at the target site, with no wild-type alleles detected. Germline transmission rates reflected the extent of albinism in the mosaic adult, with maternal transmission approaching 100%. This first application of CRISPR-Cas9 in the Bufonidae family opens possibilities for exploring basic research questions and population control strategies.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/25731599251382427\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/25731599251382427","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Efficient CRISPR-Cas9-Mediated Genome Editing of the Cane Toad (Rhinella marina).
Invasive species inflict major ecological, economic, and cultural harm worldwide, highlighting the urgent need for innovative control strategies. Genome editing offers exciting possibilities for targeted control methods for invasive species. Here, we demonstrate CRISPR-Cas9 genome editing in the cane toad (Rhinella marina), one of Australia's most notorious invasive species, by targeting the tyrosinase gene to produce albino phenotypes as visual markers for assessing editing efficiency. Microinjection of Cas9 protein and guide RNAs into one-cell zygotes resulted in 87.6% of mosaic larvae displaying nearly complete albinism, with 2.3% exhibiting complete albinism. For completely albino individuals, genomic analysis confirmed predominantly frameshift mutations or large deletions at the target site, with no wild-type alleles detected. Germline transmission rates reflected the extent of albinism in the mosaic adult, with maternal transmission approaching 100%. This first application of CRISPR-Cas9 in the Bufonidae family opens possibilities for exploring basic research questions and population control strategies.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.