使用时钟绘制测试图像进行全自动和可扩展的痴呆症筛查的视觉转换方法。

IF 4.4 Q1 CLINICAL NEUROLOGY
Michael B Bone, Morris Freedman, Sandra E Black, Daniel Felsky, Sanjeev Kumar, Bradley Pugh, Stephen C Strother, David F Tang-Wai, Maria Carmela Tartaglia, Bradley R Buchsbaum
{"title":"使用时钟绘制测试图像进行全自动和可扩展的痴呆症筛查的视觉转换方法。","authors":"Michael B Bone, Morris Freedman, Sandra E Black, Daniel Felsky, Sanjeev Kumar, Bradley Pugh, Stephen C Strother, David F Tang-Wai, Maria Carmela Tartaglia, Bradley R Buchsbaum","doi":"10.1002/dad2.70171","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The clock drawing test (CDT) screens for dementia but requires trained scorers and lacks standardized criteria. Thus, we developed an automated vision transformer (ViT)-based diagnostic system with convolutional neural network preprocessing for analyzing hand-drawn CDT images.</p><p><strong>Methods: </strong>The architecture implements fine-tuned ViT feature extraction with linear classification for dementia prediction. Training used the National Health and Aging Trends Study (NHATS) dataset (<i>n</i> = 54,027), with testing on an independent clinical cohort from the Toronto Dementia Research Alliance (TDRA; <i>n</i> = 862; 522 dementia, 340 normal cognition).</p><p><strong>Results: </strong>The ViT approach predicted dementia with 76.5% balanced accuracy, outperforming human-scored features (74.3%) and existing deep learning models (MiniVGG = 73.3%, MobileNetV2 = 72.3%, relevance factor variational autoencoder = 69.1%) on the TDRA dataset.</p><p><strong>Discussion: </strong>This pen-and-paper compatible diagnostic system enables scalable remote cognitive screening through automated CDT image analysis that is competitive with human-scored features, potentially increasing diagnostic accessibility for diverse populations across varied socioeconomic contexts.</p><p><strong>Highlights: </strong>The vision transformer model achieves 76.5% accuracy in dementia detection from clock drawing tests, outperforming human scoring and existing deep learning methods.Novel convolutional neural network-based preprocessing automatically handles challenging image quality issues like shadows, irrelevant markings, and improper cropping.The system requires only a photo of a hand-drawn clock test, enabling scalable remote screening accessible across socioeconomic contexts.A feature-extraction model trained on 54,027 samples demonstrates robust generalization to an independent clinical dataset of 862 patients.This fully automated approach eliminates the need for trained scorers while maintaining diagnostic accuracy above manual methods.</p>","PeriodicalId":53226,"journal":{"name":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","volume":"17 3","pages":"e70171"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457074/pdf/","citationCount":"0","resultStr":"{\"title\":\"A vision transformer approach for fully automated and scalable dementia screening using clock drawing test images.\",\"authors\":\"Michael B Bone, Morris Freedman, Sandra E Black, Daniel Felsky, Sanjeev Kumar, Bradley Pugh, Stephen C Strother, David F Tang-Wai, Maria Carmela Tartaglia, Bradley R Buchsbaum\",\"doi\":\"10.1002/dad2.70171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The clock drawing test (CDT) screens for dementia but requires trained scorers and lacks standardized criteria. Thus, we developed an automated vision transformer (ViT)-based diagnostic system with convolutional neural network preprocessing for analyzing hand-drawn CDT images.</p><p><strong>Methods: </strong>The architecture implements fine-tuned ViT feature extraction with linear classification for dementia prediction. Training used the National Health and Aging Trends Study (NHATS) dataset (<i>n</i> = 54,027), with testing on an independent clinical cohort from the Toronto Dementia Research Alliance (TDRA; <i>n</i> = 862; 522 dementia, 340 normal cognition).</p><p><strong>Results: </strong>The ViT approach predicted dementia with 76.5% balanced accuracy, outperforming human-scored features (74.3%) and existing deep learning models (MiniVGG = 73.3%, MobileNetV2 = 72.3%, relevance factor variational autoencoder = 69.1%) on the TDRA dataset.</p><p><strong>Discussion: </strong>This pen-and-paper compatible diagnostic system enables scalable remote cognitive screening through automated CDT image analysis that is competitive with human-scored features, potentially increasing diagnostic accessibility for diverse populations across varied socioeconomic contexts.</p><p><strong>Highlights: </strong>The vision transformer model achieves 76.5% accuracy in dementia detection from clock drawing tests, outperforming human scoring and existing deep learning methods.Novel convolutional neural network-based preprocessing automatically handles challenging image quality issues like shadows, irrelevant markings, and improper cropping.The system requires only a photo of a hand-drawn clock test, enabling scalable remote screening accessible across socioeconomic contexts.A feature-extraction model trained on 54,027 samples demonstrates robust generalization to an independent clinical dataset of 862 patients.This fully automated approach eliminates the need for trained scorers while maintaining diagnostic accuracy above manual methods.</p>\",\"PeriodicalId\":53226,\"journal\":{\"name\":\"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring\",\"volume\":\"17 3\",\"pages\":\"e70171\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457074/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/dad2.70171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dad2.70171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

时钟绘制测试(CDT)筛查痴呆症,但需要训练有素的评分员,缺乏标准化标准。因此,我们开发了一个基于卷积神经网络预处理的自动视觉变压器(ViT)诊断系统,用于分析手绘CDT图像。方法:该体系结构实现线性分类的微调ViT特征提取,用于痴呆预测。训练使用了国家健康和老龄化趋势研究(NHATS)数据集(n = 54,027),并对来自多伦多痴呆症研究联盟(TDRA; n = 862; 522名痴呆症患者,340名正常认知)的独立临床队列进行了测试。结果:在TDRA数据集上,ViT方法预测痴呆的平衡准确率为76.5%,优于人类评分特征(74.3%)和现有深度学习模型(MiniVGG = 73.3%, MobileNetV2 = 72.3%,相关因子变分自动编码器= 69.1%)。讨论:这种纸笔兼容的诊断系统通过自动CDT图像分析实现可扩展的远程认知筛查,与人工评分的特征相竞争,潜在地增加了不同社会经济背景下不同人群的诊断可及性。重点:视觉变形模型在时钟绘制测试中检测痴呆准确率达到76.5%,优于人类评分和现有深度学习方法。新颖的基于卷积神经网络的预处理自动处理具有挑战性的图像质量问题,如阴影、不相关的标记和不适当的裁剪。该系统只需要一张手绘时钟测试的照片,就可以在不同社会经济背景下进行可扩展的远程筛查。在54,027个样本上训练的特征提取模型显示出对862名患者的独立临床数据集的鲁棒泛化。这种完全自动化的方法消除了对训练有素的评分员的需要,同时保持了高于手动方法的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vision transformer approach for fully automated and scalable dementia screening using clock drawing test images.

Introduction: The clock drawing test (CDT) screens for dementia but requires trained scorers and lacks standardized criteria. Thus, we developed an automated vision transformer (ViT)-based diagnostic system with convolutional neural network preprocessing for analyzing hand-drawn CDT images.

Methods: The architecture implements fine-tuned ViT feature extraction with linear classification for dementia prediction. Training used the National Health and Aging Trends Study (NHATS) dataset (n = 54,027), with testing on an independent clinical cohort from the Toronto Dementia Research Alliance (TDRA; n = 862; 522 dementia, 340 normal cognition).

Results: The ViT approach predicted dementia with 76.5% balanced accuracy, outperforming human-scored features (74.3%) and existing deep learning models (MiniVGG = 73.3%, MobileNetV2 = 72.3%, relevance factor variational autoencoder = 69.1%) on the TDRA dataset.

Discussion: This pen-and-paper compatible diagnostic system enables scalable remote cognitive screening through automated CDT image analysis that is competitive with human-scored features, potentially increasing diagnostic accessibility for diverse populations across varied socioeconomic contexts.

Highlights: The vision transformer model achieves 76.5% accuracy in dementia detection from clock drawing tests, outperforming human scoring and existing deep learning methods.Novel convolutional neural network-based preprocessing automatically handles challenging image quality issues like shadows, irrelevant markings, and improper cropping.The system requires only a photo of a hand-drawn clock test, enabling scalable remote screening accessible across socioeconomic contexts.A feature-extraction model trained on 54,027 samples demonstrates robust generalization to an independent clinical dataset of 862 patients.This fully automated approach eliminates the need for trained scorers while maintaining diagnostic accuracy above manual methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
7.50%
发文量
101
审稿时长
8 weeks
期刊介绍: Alzheimer''s & Dementia: Diagnosis, Assessment & Disease Monitoring (DADM) is an open access, peer-reviewed, journal from the Alzheimer''s Association® that will publish new research that reports the discovery, development and validation of instruments, technologies, algorithms, and innovative processes. Papers will cover a range of topics interested in the early and accurate detection of individuals with memory complaints and/or among asymptomatic individuals at elevated risk for various forms of memory disorders. The expectation for published papers will be to translate fundamental knowledge about the neurobiology of the disease into practical reports that describe both the conceptual and methodological aspects of the submitted scientific inquiry. Published topics will explore the development of biomarkers, surrogate markers, and conceptual/methodological challenges. Publication priority will be given to papers that 1) describe putative surrogate markers that accurately track disease progression, 2) biomarkers that fulfill international regulatory requirements, 3) reports from large, well-characterized population-based cohorts that comprise the heterogeneity and diversity of asymptomatic individuals and 4) algorithmic development that considers multi-marker arrays (e.g., integrated-omics, genetics, biofluids, imaging, etc.) and advanced computational analytics and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信