波散射的动态和几何位移。

IF 20.7
Konstantin Y Bliokh, Zeyu Kuang, Stefan Rotter
{"title":"波散射的动态和几何位移。","authors":"Konstantin Y Bliokh, Zeyu Kuang, Stefan Rotter","doi":"10.1088/1361-6633/ae0bac","DOIUrl":null,"url":null,"abstract":"<p><p>Since Berry's pioneering 1984 work, the separation of<i>geometric</i>and<i>dynamic</i>contributions in the<i>phase</i>of an evolving wave has become fundamental in physics, underpinning diverse phenomena in quantum mechanics, optics, and condensed matter. Here we extend this geometric-dynamic decomposition from the wave-evolution phase to a distinct class of<i>wave scattering</i>problems, where observables (such as frequency, momentum, or position) experience<i>shifts in their expectation values</i>between the input and output wave states. We describe this class of problems using a unitary scattering matrix and the associated<i>generalized Wigner-Smith operator</i>(GWSO), which involves gradients of the scattering matrix with respect to conjugate variables (time, position, or momentum, respectively). We show that both the GWSO and the resulting expectation-values shifts admit gauge-invariant decompositions into dynamic and geometric parts, related respectively to gradients of the<i>eigenvalues</i>and<i>eigenvectors</i>of the scattering matrix. We illustrate this general theory through a series of examples, including frequency shifts in polarized-light transmission through a time-varying waveplate (linked to the Pancharatnam-Berry phase), momentum shifts at spatially varying metasurfaces, optical forces, beam shifts upon reflection at a dielectric interface, and Wigner time delays in 1D scattering. This unifying framework illuminates the interplay between geometry and dynamics in wave scattering and can be applied to a broad range of physical systems.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":20.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic and geometric shifts in wave scattering.\",\"authors\":\"Konstantin Y Bliokh, Zeyu Kuang, Stefan Rotter\",\"doi\":\"10.1088/1361-6633/ae0bac\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since Berry's pioneering 1984 work, the separation of<i>geometric</i>and<i>dynamic</i>contributions in the<i>phase</i>of an evolving wave has become fundamental in physics, underpinning diverse phenomena in quantum mechanics, optics, and condensed matter. Here we extend this geometric-dynamic decomposition from the wave-evolution phase to a distinct class of<i>wave scattering</i>problems, where observables (such as frequency, momentum, or position) experience<i>shifts in their expectation values</i>between the input and output wave states. We describe this class of problems using a unitary scattering matrix and the associated<i>generalized Wigner-Smith operator</i>(GWSO), which involves gradients of the scattering matrix with respect to conjugate variables (time, position, or momentum, respectively). We show that both the GWSO and the resulting expectation-values shifts admit gauge-invariant decompositions into dynamic and geometric parts, related respectively to gradients of the<i>eigenvalues</i>and<i>eigenvectors</i>of the scattering matrix. We illustrate this general theory through a series of examples, including frequency shifts in polarized-light transmission through a time-varying waveplate (linked to the Pancharatnam-Berry phase), momentum shifts at spatially varying metasurfaces, optical forces, beam shifts upon reflection at a dielectric interface, and Wigner time delays in 1D scattering. This unifying framework illuminates the interplay between geometry and dynamics in wave scattering and can be applied to a broad range of physical systems.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ae0bac\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ae0bac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自从Berry在1984年的开创性工作以来,在波的演化阶段中,几何和动态贡献的分离已经成为波物理学的基础,支撑着量子力学、光学和凝聚态物质中的各种现象。在这里,我们将这种几何动力学分解从波演化阶段扩展到一类不同的波散射问题,其中 ;可观测值(如频率,动量或位置)在输入和输出波状态之间的期望值 ;我们使用统一的 ;散射矩阵和相关的广义Wigner-Smith算子(GWSO)来描述这类问题,其中涉及散射矩阵相对于共轭变量(分别为时间、位置或动量 ;)的梯度。我们表明,GWSO和由此产生的期望值位移都承认 ;量规不变分解为动态部分和几何部分,分别与散射矩阵的特征值和特征向量的梯度 ;相关。我们通过一系列的例子来说明这一一般理论,包括偏振光通过a 传输时的频移、时变波片(与Pancharatnam-Berry相相关联)、空间上的动量移、变化的超表面、光学力、介电界面反射时的光束移以及一维散射中的Wigner 时间延迟。这个统一的框架阐明了波散射中几何和动力学之间的相互作用,可以很容易地应用于广泛的物理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic and geometric shifts in wave scattering.

Since Berry's pioneering 1984 work, the separation ofgeometricanddynamiccontributions in thephaseof an evolving wave has become fundamental in physics, underpinning diverse phenomena in quantum mechanics, optics, and condensed matter. Here we extend this geometric-dynamic decomposition from the wave-evolution phase to a distinct class ofwave scatteringproblems, where observables (such as frequency, momentum, or position) experienceshifts in their expectation valuesbetween the input and output wave states. We describe this class of problems using a unitary scattering matrix and the associatedgeneralized Wigner-Smith operator(GWSO), which involves gradients of the scattering matrix with respect to conjugate variables (time, position, or momentum, respectively). We show that both the GWSO and the resulting expectation-values shifts admit gauge-invariant decompositions into dynamic and geometric parts, related respectively to gradients of theeigenvaluesandeigenvectorsof the scattering matrix. We illustrate this general theory through a series of examples, including frequency shifts in polarized-light transmission through a time-varying waveplate (linked to the Pancharatnam-Berry phase), momentum shifts at spatially varying metasurfaces, optical forces, beam shifts upon reflection at a dielectric interface, and Wigner time delays in 1D scattering. This unifying framework illuminates the interplay between geometry and dynamics in wave scattering and can be applied to a broad range of physical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信