推进单分子生物物理学:下一代有机荧光团与量身定制的标签策略。

IF 5.7
Chemical & Biomedical Imaging Pub Date : 2025-04-01 eCollection Date: 2025-09-22 DOI:10.1021/cbmi.5c00007
Lei Zhang, Dongwen Shen, Jiazhen Yang
{"title":"推进单分子生物物理学:下一代有机荧光团与量身定制的标签策略。","authors":"Lei Zhang, Dongwen Shen, Jiazhen Yang","doi":"10.1021/cbmi.5c00007","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in single-molecule biophysics have been driven by breakthroughs in advanced fluorescence microscopy techniques and the development of next-generation organic fluorophores. These cutting-edge fluorophores, coupled through tailored biolabeling strategies, offer single-molecule brightness, photostability, and phototunability (i.e., photoswitchable, photoactivatable), contributing to enhancing spatial and temporal imaging resolution for studying biomolecular interactions and dynamics at single-event precision. This review examines the progress made over the past decade in the development of next-generation fluorophores, along with their site-specific labeling methods for proteins, nucleic acids, and biomolecular complexes. It also explores their applications in single-molecule fluorescence-based dynamic structural biology and super-resolution microscopy imaging. Furthermore, it examines ongoing efforts to address challenges associated with fluorophore photostability, photobleaching, and the integration of advanced photophysical and photochemical functionalities. The integration of state-of-the-art fluorophores with advanced labeling strategies aim to deliver complementary correlative data, holding promise for revolutionizing single-molecule biophysics by pushing the boundaries of temporal and spatial imaging resolution to unprecedented limits.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 9","pages":"572-598"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing Single-Molecule Biophysics: Next-Generation Organic Fluorophores with Tailored Labeling Strategies.\",\"authors\":\"Lei Zhang, Dongwen Shen, Jiazhen Yang\",\"doi\":\"10.1021/cbmi.5c00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in single-molecule biophysics have been driven by breakthroughs in advanced fluorescence microscopy techniques and the development of next-generation organic fluorophores. These cutting-edge fluorophores, coupled through tailored biolabeling strategies, offer single-molecule brightness, photostability, and phototunability (i.e., photoswitchable, photoactivatable), contributing to enhancing spatial and temporal imaging resolution for studying biomolecular interactions and dynamics at single-event precision. This review examines the progress made over the past decade in the development of next-generation fluorophores, along with their site-specific labeling methods for proteins, nucleic acids, and biomolecular complexes. It also explores their applications in single-molecule fluorescence-based dynamic structural biology and super-resolution microscopy imaging. Furthermore, it examines ongoing efforts to address challenges associated with fluorophore photostability, photobleaching, and the integration of advanced photophysical and photochemical functionalities. The integration of state-of-the-art fluorophores with advanced labeling strategies aim to deliver complementary correlative data, holding promise for revolutionizing single-molecule biophysics by pushing the boundaries of temporal and spatial imaging resolution to unprecedented limits.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"3 9\",\"pages\":\"572-598\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbmi.5c00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/22 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.5c00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进荧光显微镜技术的突破和下一代有机荧光团的发展推动了单分子生物物理学的最新进展。这些尖端的荧光团,通过量身定制的生物标记策略,提供单分子亮度,光稳定性和光可调性(即光切换,光激活),有助于提高空间和时间成像分辨率,用于研究单事件精度的生物分子相互作用和动力学。本文综述了过去十年来在下一代荧光团的发展方面取得的进展,以及它们对蛋白质、核酸和生物分子复合物的位点特异性标记方法。它还探讨了它们在单分子荧光动态结构生物学和超分辨率显微镜成像中的应用。此外,它还审查了正在进行的努力,以解决与荧光团光稳定性、光漂白以及先进的光物理和光化学功能的整合相关的挑战。将最先进的荧光团与先进的标记策略相结合,旨在提供互补的相关数据,通过将时间和空间成像分辨率的界限推向前所未有的极限,有望彻底改变单分子生物物理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Single-Molecule Biophysics: Next-Generation Organic Fluorophores with Tailored Labeling Strategies.

Recent advancements in single-molecule biophysics have been driven by breakthroughs in advanced fluorescence microscopy techniques and the development of next-generation organic fluorophores. These cutting-edge fluorophores, coupled through tailored biolabeling strategies, offer single-molecule brightness, photostability, and phototunability (i.e., photoswitchable, photoactivatable), contributing to enhancing spatial and temporal imaging resolution for studying biomolecular interactions and dynamics at single-event precision. This review examines the progress made over the past decade in the development of next-generation fluorophores, along with their site-specific labeling methods for proteins, nucleic acids, and biomolecular complexes. It also explores their applications in single-molecule fluorescence-based dynamic structural biology and super-resolution microscopy imaging. Furthermore, it examines ongoing efforts to address challenges associated with fluorophore photostability, photobleaching, and the integration of advanced photophysical and photochemical functionalities. The integration of state-of-the-art fluorophores with advanced labeling strategies aim to deliver complementary correlative data, holding promise for revolutionizing single-molecule biophysics by pushing the boundaries of temporal and spatial imaging resolution to unprecedented limits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信