{"title":"可穿戴超声检测与成像设备的设计与应用。","authors":"Yuning Lei, Jinjie Duan, Qi Qi, Jie Fang, Qian Liu, Shuang Zhou, Yuxiang Wu","doi":"10.3390/bios15090561","DOIUrl":null,"url":null,"abstract":"<p><p>The convergence of flexible electronics and miniaturized ultrasound transducers has accelerated the development of wearable ultrasound devices, offering innovative solutions for continuous, non-invasive physiological monitoring and disease diagnosis. This review systematically examines the recent progress in the field, focusing on three key aspects: physical principles, device design, and clinical applications. From the perspective of physical principles, we provide an in-depth analysis of the fundamental theories underlying ultrasound imaging, including acoustic wave propagation in biological tissues, interface reflection mechanisms, and Doppler effects. In terms of device design, we compare technical approaches for rigid and flexible ultrasound transducers, with particular emphasis on innovative designs for flexible transducers. The key developments discussed include optimization of piezoelectric materials, the fabrication of stretchable electrodes, and advances in flexible encapsulation materials. Regarding clinical applications, we categorize the use cases by anatomical region and illustrate their diagnostic value through representative examples, demonstrating their utility in disease detection, health monitoring, and sports medicine. Finally, we identify critical challenges such as signal stability, coupling material compatibility, and long-term wearability, while outlining future directions including AI-assisted diagnosis and multifunctional integration. This review aims to provide a comprehensive reference for both fundamental research and clinical translation of wearable ultrasound technologies.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467586/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Design and Application of Wearable Ultrasound Devices for Detection and Imaging.\",\"authors\":\"Yuning Lei, Jinjie Duan, Qi Qi, Jie Fang, Qian Liu, Shuang Zhou, Yuxiang Wu\",\"doi\":\"10.3390/bios15090561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The convergence of flexible electronics and miniaturized ultrasound transducers has accelerated the development of wearable ultrasound devices, offering innovative solutions for continuous, non-invasive physiological monitoring and disease diagnosis. This review systematically examines the recent progress in the field, focusing on three key aspects: physical principles, device design, and clinical applications. From the perspective of physical principles, we provide an in-depth analysis of the fundamental theories underlying ultrasound imaging, including acoustic wave propagation in biological tissues, interface reflection mechanisms, and Doppler effects. In terms of device design, we compare technical approaches for rigid and flexible ultrasound transducers, with particular emphasis on innovative designs for flexible transducers. The key developments discussed include optimization of piezoelectric materials, the fabrication of stretchable electrodes, and advances in flexible encapsulation materials. Regarding clinical applications, we categorize the use cases by anatomical region and illustrate their diagnostic value through representative examples, demonstrating their utility in disease detection, health monitoring, and sports medicine. Finally, we identify critical challenges such as signal stability, coupling material compatibility, and long-term wearability, while outlining future directions including AI-assisted diagnosis and multifunctional integration. This review aims to provide a comprehensive reference for both fundamental research and clinical translation of wearable ultrasound technologies.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15090561\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
The Design and Application of Wearable Ultrasound Devices for Detection and Imaging.
The convergence of flexible electronics and miniaturized ultrasound transducers has accelerated the development of wearable ultrasound devices, offering innovative solutions for continuous, non-invasive physiological monitoring and disease diagnosis. This review systematically examines the recent progress in the field, focusing on three key aspects: physical principles, device design, and clinical applications. From the perspective of physical principles, we provide an in-depth analysis of the fundamental theories underlying ultrasound imaging, including acoustic wave propagation in biological tissues, interface reflection mechanisms, and Doppler effects. In terms of device design, we compare technical approaches for rigid and flexible ultrasound transducers, with particular emphasis on innovative designs for flexible transducers. The key developments discussed include optimization of piezoelectric materials, the fabrication of stretchable electrodes, and advances in flexible encapsulation materials. Regarding clinical applications, we categorize the use cases by anatomical region and illustrate their diagnostic value through representative examples, demonstrating their utility in disease detection, health monitoring, and sports medicine. Finally, we identify critical challenges such as signal stability, coupling material compatibility, and long-term wearability, while outlining future directions including AI-assisted diagnosis and multifunctional integration. This review aims to provide a comprehensive reference for both fundamental research and clinical translation of wearable ultrasound technologies.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.