可穿戴超声检测与成像设备的设计与应用。

IF 5.6 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Yuning Lei, Jinjie Duan, Qi Qi, Jie Fang, Qian Liu, Shuang Zhou, Yuxiang Wu
{"title":"可穿戴超声检测与成像设备的设计与应用。","authors":"Yuning Lei, Jinjie Duan, Qi Qi, Jie Fang, Qian Liu, Shuang Zhou, Yuxiang Wu","doi":"10.3390/bios15090561","DOIUrl":null,"url":null,"abstract":"<p><p>The convergence of flexible electronics and miniaturized ultrasound transducers has accelerated the development of wearable ultrasound devices, offering innovative solutions for continuous, non-invasive physiological monitoring and disease diagnosis. This review systematically examines the recent progress in the field, focusing on three key aspects: physical principles, device design, and clinical applications. From the perspective of physical principles, we provide an in-depth analysis of the fundamental theories underlying ultrasound imaging, including acoustic wave propagation in biological tissues, interface reflection mechanisms, and Doppler effects. In terms of device design, we compare technical approaches for rigid and flexible ultrasound transducers, with particular emphasis on innovative designs for flexible transducers. The key developments discussed include optimization of piezoelectric materials, the fabrication of stretchable electrodes, and advances in flexible encapsulation materials. Regarding clinical applications, we categorize the use cases by anatomical region and illustrate their diagnostic value through representative examples, demonstrating their utility in disease detection, health monitoring, and sports medicine. Finally, we identify critical challenges such as signal stability, coupling material compatibility, and long-term wearability, while outlining future directions including AI-assisted diagnosis and multifunctional integration. This review aims to provide a comprehensive reference for both fundamental research and clinical translation of wearable ultrasound technologies.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467586/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Design and Application of Wearable Ultrasound Devices for Detection and Imaging.\",\"authors\":\"Yuning Lei, Jinjie Duan, Qi Qi, Jie Fang, Qian Liu, Shuang Zhou, Yuxiang Wu\",\"doi\":\"10.3390/bios15090561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The convergence of flexible electronics and miniaturized ultrasound transducers has accelerated the development of wearable ultrasound devices, offering innovative solutions for continuous, non-invasive physiological monitoring and disease diagnosis. This review systematically examines the recent progress in the field, focusing on three key aspects: physical principles, device design, and clinical applications. From the perspective of physical principles, we provide an in-depth analysis of the fundamental theories underlying ultrasound imaging, including acoustic wave propagation in biological tissues, interface reflection mechanisms, and Doppler effects. In terms of device design, we compare technical approaches for rigid and flexible ultrasound transducers, with particular emphasis on innovative designs for flexible transducers. The key developments discussed include optimization of piezoelectric materials, the fabrication of stretchable electrodes, and advances in flexible encapsulation materials. Regarding clinical applications, we categorize the use cases by anatomical region and illustrate their diagnostic value through representative examples, demonstrating their utility in disease detection, health monitoring, and sports medicine. Finally, we identify critical challenges such as signal stability, coupling material compatibility, and long-term wearability, while outlining future directions including AI-assisted diagnosis and multifunctional integration. This review aims to provide a comprehensive reference for both fundamental research and clinical translation of wearable ultrasound technologies.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15090561\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性电子和小型化超声换能器的融合加速了可穿戴超声设备的发展,为连续、无创的生理监测和疾病诊断提供了创新的解决方案。本综述系统地考察了该领域的最新进展,重点关注三个关键方面:物理原理、设备设计和临床应用。从物理原理的角度,深入分析了超声成像的基本理论,包括声波在生物组织中的传播、界面反射机制和多普勒效应。在设备设计方面,我们比较了刚性和柔性超声换能器的技术方法,特别强调了柔性换能器的创新设计。讨论的关键发展包括压电材料的优化,可拉伸电极的制造,以及柔性封装材料的进展。在临床应用方面,我们将用例按解剖区域分类,并通过代表性的例子说明其诊断价值,展示其在疾病检测、健康监测和运动医学方面的应用。最后,我们确定了信号稳定性、耦合材料兼容性和长期可穿戴性等关键挑战,同时概述了未来的发展方向,包括人工智能辅助诊断和多功能集成。本文旨在为可穿戴超声技术的基础研究和临床应用提供综合参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Design and Application of Wearable Ultrasound Devices for Detection and Imaging.

The convergence of flexible electronics and miniaturized ultrasound transducers has accelerated the development of wearable ultrasound devices, offering innovative solutions for continuous, non-invasive physiological monitoring and disease diagnosis. This review systematically examines the recent progress in the field, focusing on three key aspects: physical principles, device design, and clinical applications. From the perspective of physical principles, we provide an in-depth analysis of the fundamental theories underlying ultrasound imaging, including acoustic wave propagation in biological tissues, interface reflection mechanisms, and Doppler effects. In terms of device design, we compare technical approaches for rigid and flexible ultrasound transducers, with particular emphasis on innovative designs for flexible transducers. The key developments discussed include optimization of piezoelectric materials, the fabrication of stretchable electrodes, and advances in flexible encapsulation materials. Regarding clinical applications, we categorize the use cases by anatomical region and illustrate their diagnostic value through representative examples, demonstrating their utility in disease detection, health monitoring, and sports medicine. Finally, we identify critical challenges such as signal stability, coupling material compatibility, and long-term wearability, while outlining future directions including AI-assisted diagnosis and multifunctional integration. This review aims to provide a comprehensive reference for both fundamental research and clinical translation of wearable ultrasound technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信