Somnath Maji, Myounggyu Kwak, Reetesh Kumar, Hyungseok Lee
{"title":"3D打印辅助可穿戴和植入式生物传感器。","authors":"Somnath Maji, Myounggyu Kwak, Reetesh Kumar, Hyungseok Lee","doi":"10.3390/bios15090619","DOIUrl":null,"url":null,"abstract":"<p><p>Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges by enabling rapid prototyping, customization, and the production of intricate geometries with high precision. This review explores how additive manufacturing techniques facilitate the fabrication of flexible, stretchable, and biocompatible biosensors. By incorporating advanced materials like conductive polymers, nanocomposites, and hydrogels, 3D-printed biosensors achieve enhanced sensitivity, durability, and seamless integration with biological systems. Innovations such as biodegradable substrates and multi-material printing further expand applications in continuous glucose monitoring, neural interfaces, and point-of-care diagnostics. Despite challenges in material optimization and regulatory standardization, the convergence of 3D printing with nanotechnology and smart diagnostics heralds a new era of personalized, proactive healthcare, offering scalable solutions for both clinical and remote settings. This synthesis underscores the pivotal role of additive manufacturing in advancing wearable and implantable biosensor technology, paving the way for next-generation devices that prioritize patient-specific care and real-time health management.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468503/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D Printing Assisted Wearable and Implantable Biosensors.\",\"authors\":\"Somnath Maji, Myounggyu Kwak, Reetesh Kumar, Hyungseok Lee\",\"doi\":\"10.3390/bios15090619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges by enabling rapid prototyping, customization, and the production of intricate geometries with high precision. This review explores how additive manufacturing techniques facilitate the fabrication of flexible, stretchable, and biocompatible biosensors. By incorporating advanced materials like conductive polymers, nanocomposites, and hydrogels, 3D-printed biosensors achieve enhanced sensitivity, durability, and seamless integration with biological systems. Innovations such as biodegradable substrates and multi-material printing further expand applications in continuous glucose monitoring, neural interfaces, and point-of-care diagnostics. Despite challenges in material optimization and regulatory standardization, the convergence of 3D printing with nanotechnology and smart diagnostics heralds a new era of personalized, proactive healthcare, offering scalable solutions for both clinical and remote settings. This synthesis underscores the pivotal role of additive manufacturing in advancing wearable and implantable biosensor technology, paving the way for next-generation devices that prioritize patient-specific care and real-time health management.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468503/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15090619\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090619","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
3D Printing Assisted Wearable and Implantable Biosensors.
Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges by enabling rapid prototyping, customization, and the production of intricate geometries with high precision. This review explores how additive manufacturing techniques facilitate the fabrication of flexible, stretchable, and biocompatible biosensors. By incorporating advanced materials like conductive polymers, nanocomposites, and hydrogels, 3D-printed biosensors achieve enhanced sensitivity, durability, and seamless integration with biological systems. Innovations such as biodegradable substrates and multi-material printing further expand applications in continuous glucose monitoring, neural interfaces, and point-of-care diagnostics. Despite challenges in material optimization and regulatory standardization, the convergence of 3D printing with nanotechnology and smart diagnostics heralds a new era of personalized, proactive healthcare, offering scalable solutions for both clinical and remote settings. This synthesis underscores the pivotal role of additive manufacturing in advancing wearable and implantable biosensor technology, paving the way for next-generation devices that prioritize patient-specific care and real-time health management.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.