Nisha Makani, Jett Wu, Jose Florentino, Cecilia F Chafin, Bhoj Gautam, Shirley Chao, Shubo Han
{"title":"基于Ti3C2TX MXene量子点的有机磷农药敏感电化学胆碱酯酶抑制生物传感器","authors":"Nisha Makani, Jett Wu, Jose Florentino, Cecilia F Chafin, Bhoj Gautam, Shirley Chao, Shubo Han","doi":"10.3390/bios15090575","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphorus pesticides (OPs) pose significant environmental and health risks due to their widespread use and toxicity, primarily by inhibiting acetylcholinesterase. Traditional detection methods are often slow and costly, highlighting the urgent need for advanced, sensitive, and accessible technologies. This study developed a highly sensitive electrochemical cholinesterase-inhibiting biosensor for OP pesticides, utilizing Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene Quantum Dots (MQDs), which was synthesized via a hydrothermal method. The biosensor's performance was characterized using electrochemical impedance spectroscopy, differential pulse voltammetry (DPV), and cyclic voltammetry. DPV proved to be the optimal technique, exhibiting an ultralow detection limit of 1 × 10<sup>-17</sup> M and a wide linear range (10<sup>-14</sup>-10<sup>-8</sup> M) for chlorpyrifos (a model OP) with an estimated inhibition constant of 62 nM. The biosensor demonstrated high selectivity for OPs (chlorpyrifos, acephate, glyphosate) over a non-target pyrethroid (permethrin), confirmed by distinct electrochemical signatures and compared to in vitro cholinergic activity assays in bean beetle homogenates. The enhanced performance is attributed to the high surface-to-volume ratio, quantum confinement effects, and superior conductivity of the MQDs, as well as the robust enzyme immobilization facilitated by glutaraldehyde cross-linking and a chitosan matrix. This work presents a promising platform for rapid, sensitive, and selective detection of OP pesticides, with potential applications in environmental monitoring and public health protection.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467903/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Sensitive Electrochemical Cholinesterase-Inhibiting Biosensor for Organophosphorus Pesticides Based on Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene Quantum Dots.\",\"authors\":\"Nisha Makani, Jett Wu, Jose Florentino, Cecilia F Chafin, Bhoj Gautam, Shirley Chao, Shubo Han\",\"doi\":\"10.3390/bios15090575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organophosphorus pesticides (OPs) pose significant environmental and health risks due to their widespread use and toxicity, primarily by inhibiting acetylcholinesterase. Traditional detection methods are often slow and costly, highlighting the urgent need for advanced, sensitive, and accessible technologies. This study developed a highly sensitive electrochemical cholinesterase-inhibiting biosensor for OP pesticides, utilizing Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene Quantum Dots (MQDs), which was synthesized via a hydrothermal method. The biosensor's performance was characterized using electrochemical impedance spectroscopy, differential pulse voltammetry (DPV), and cyclic voltammetry. DPV proved to be the optimal technique, exhibiting an ultralow detection limit of 1 × 10<sup>-17</sup> M and a wide linear range (10<sup>-14</sup>-10<sup>-8</sup> M) for chlorpyrifos (a model OP) with an estimated inhibition constant of 62 nM. The biosensor demonstrated high selectivity for OPs (chlorpyrifos, acephate, glyphosate) over a non-target pyrethroid (permethrin), confirmed by distinct electrochemical signatures and compared to in vitro cholinergic activity assays in bean beetle homogenates. The enhanced performance is attributed to the high surface-to-volume ratio, quantum confinement effects, and superior conductivity of the MQDs, as well as the robust enzyme immobilization facilitated by glutaraldehyde cross-linking and a chitosan matrix. This work presents a promising platform for rapid, sensitive, and selective detection of OP pesticides, with potential applications in environmental monitoring and public health protection.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15090575\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090575","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Sensitive Electrochemical Cholinesterase-Inhibiting Biosensor for Organophosphorus Pesticides Based on Ti3C2TX MXene Quantum Dots.
Organophosphorus pesticides (OPs) pose significant environmental and health risks due to their widespread use and toxicity, primarily by inhibiting acetylcholinesterase. Traditional detection methods are often slow and costly, highlighting the urgent need for advanced, sensitive, and accessible technologies. This study developed a highly sensitive electrochemical cholinesterase-inhibiting biosensor for OP pesticides, utilizing Ti3C2Tx MXene Quantum Dots (MQDs), which was synthesized via a hydrothermal method. The biosensor's performance was characterized using electrochemical impedance spectroscopy, differential pulse voltammetry (DPV), and cyclic voltammetry. DPV proved to be the optimal technique, exhibiting an ultralow detection limit of 1 × 10-17 M and a wide linear range (10-14-10-8 M) for chlorpyrifos (a model OP) with an estimated inhibition constant of 62 nM. The biosensor demonstrated high selectivity for OPs (chlorpyrifos, acephate, glyphosate) over a non-target pyrethroid (permethrin), confirmed by distinct electrochemical signatures and compared to in vitro cholinergic activity assays in bean beetle homogenates. The enhanced performance is attributed to the high surface-to-volume ratio, quantum confinement effects, and superior conductivity of the MQDs, as well as the robust enzyme immobilization facilitated by glutaraldehyde cross-linking and a chitosan matrix. This work presents a promising platform for rapid, sensitive, and selective detection of OP pesticides, with potential applications in environmental monitoring and public health protection.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.