场效应晶体管源漏沟道中有机半导体与石墨烯材料的相互作用。

IF 5.6 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Eugen Chiriac, Bianca Adiaconita, Tiberiu Burinaru, Catalin Marculescu, Marius Stoian, Catalin Parvulescu, Marioara Avram
{"title":"场效应晶体管源漏沟道中有机半导体与石墨烯材料的相互作用。","authors":"Eugen Chiriac, Bianca Adiaconita, Tiberiu Burinaru, Catalin Marculescu, Marius Stoian, Catalin Parvulescu, Marioara Avram","doi":"10.3390/bios15090622","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π-π stacking, charge transfer, and dipole-dipole interactions, were explored through SEM imaging, Raman and FTIR spectroscopy, and FET transfer characteristics. Spectroscopic data confirmed strong π-π and charge-transfer interactions, with distinct modifications in graphene structural and electronic features. Electrical measurements revealed significant modulation of channel conductivity, confirming effective surface functionalization. These findings provide a framework for engineering high-performance organic/graphene hybrid interfaces in electronic devices and biosensors. Importantly, the results demonstrate that molecular design and interfacial control at the nanoscale can be strategically used to modulate charge transport in graphene-based FETs. This approach opens new pathways for developing tunable, molecule-specific biosensors and nanoelectronic platforms with enhanced sensitivity and selectivity.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467717/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors.\",\"authors\":\"Eugen Chiriac, Bianca Adiaconita, Tiberiu Burinaru, Catalin Marculescu, Marius Stoian, Catalin Parvulescu, Marioara Avram\",\"doi\":\"10.3390/bios15090622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π-π stacking, charge transfer, and dipole-dipole interactions, were explored through SEM imaging, Raman and FTIR spectroscopy, and FET transfer characteristics. Spectroscopic data confirmed strong π-π and charge-transfer interactions, with distinct modifications in graphene structural and electronic features. Electrical measurements revealed significant modulation of channel conductivity, confirming effective surface functionalization. These findings provide a framework for engineering high-performance organic/graphene hybrid interfaces in electronic devices and biosensors. Importantly, the results demonstrate that molecular design and interfacial control at the nanoscale can be strategically used to modulate charge transport in graphene-based FETs. This approach opens new pathways for developing tunable, molecule-specific biosensors and nanoelectronic platforms with enhanced sensitivity and selectivity.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467717/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15090622\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090622","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了两种有机半导体(四硫代富勒烯(TTF)和六氮三苯-六碳腈(HAT-CN))与用于场效应晶体管(fet)的石墨烯基材料(纳米晶石墨和垂直排列石墨烯)之间的界面相互作用。通过SEM成像、拉曼光谱和FTIR光谱以及FET转移特性,探讨了相互作用机制,包括π-π堆积、电荷转移和偶极-偶极相互作用。光谱数据证实了强烈的π-π和电荷转移相互作用,石墨烯的结构和电子特征有明显的改变。电测量显示通道电导率的显著调制,确认有效的表面功能化。这些发现为在电子器件和生物传感器中设计高性能有机/石墨烯混合界面提供了一个框架。重要的是,结果表明,在纳米尺度上的分子设计和界面控制可以有策略地用于调制石墨烯基场效应管中的电荷输运。这种方法为开发具有更高灵敏度和选择性的可调分子特异性生物传感器和纳米电子平台开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors.

Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors.

Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors.

Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors.

This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π-π stacking, charge transfer, and dipole-dipole interactions, were explored through SEM imaging, Raman and FTIR spectroscopy, and FET transfer characteristics. Spectroscopic data confirmed strong π-π and charge-transfer interactions, with distinct modifications in graphene structural and electronic features. Electrical measurements revealed significant modulation of channel conductivity, confirming effective surface functionalization. These findings provide a framework for engineering high-performance organic/graphene hybrid interfaces in electronic devices and biosensors. Importantly, the results demonstrate that molecular design and interfacial control at the nanoscale can be strategically used to modulate charge transport in graphene-based FETs. This approach opens new pathways for developing tunable, molecule-specific biosensors and nanoelectronic platforms with enhanced sensitivity and selectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信