{"title":"运动伪像(MA)在测量动脉脉冲信号中静止:每个谐波和非平坦谐波-MA耦合基线的时变幅度。","authors":"M D Mahfuzur Rahman, Mamun Hasan, Zhili Hao","doi":"10.3390/bios15090578","DOIUrl":null,"url":null,"abstract":"<p><p>Motion artifacts (MA) cause great variability in a measured arterial pulse signal, and treatment of MA solely as a baseline drift (BD) fails to eliminate its effect on the measured signal. This paper presents a study on the effect of MA at rest (<0.7 Hz) on measured arterial pulse signals using a microfluidic-based tactile sensor. By taking full account of the dynamic behavior of the transmission path from the true pulse signal in an artery to a measured pulse signal at the sensor, the tissue-contact-sensor (TCS) stack, an analytical model of MA in a measured pulse signal is developed. In this model, the TCS stack is treated as a 1DOF system for its dynamic behavior; MA is quantified as the displacement (i.e., BD) and time-varying system parameters (TVSP) of the TCS stack. The mathematical expression of MA in a measured pulse signal reveals that while BD remains as low-frequency additive noise, TVSP causes time-varying harmonics in a measured pulse signal. Further time-frequency analysis (TFA) of measured pulse signals validates the existence of TVSP and, for the first time, reveals its effect on a measured pulse signal: time-varying amplitude in each harmonic and non-flat harmonic-MA-coupled baseline.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467602/pdf/","citationCount":"0","resultStr":"{\"title\":\"Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline.\",\"authors\":\"M D Mahfuzur Rahman, Mamun Hasan, Zhili Hao\",\"doi\":\"10.3390/bios15090578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motion artifacts (MA) cause great variability in a measured arterial pulse signal, and treatment of MA solely as a baseline drift (BD) fails to eliminate its effect on the measured signal. This paper presents a study on the effect of MA at rest (<0.7 Hz) on measured arterial pulse signals using a microfluidic-based tactile sensor. By taking full account of the dynamic behavior of the transmission path from the true pulse signal in an artery to a measured pulse signal at the sensor, the tissue-contact-sensor (TCS) stack, an analytical model of MA in a measured pulse signal is developed. In this model, the TCS stack is treated as a 1DOF system for its dynamic behavior; MA is quantified as the displacement (i.e., BD) and time-varying system parameters (TVSP) of the TCS stack. The mathematical expression of MA in a measured pulse signal reveals that while BD remains as low-frequency additive noise, TVSP causes time-varying harmonics in a measured pulse signal. Further time-frequency analysis (TFA) of measured pulse signals validates the existence of TVSP and, for the first time, reveals its effect on a measured pulse signal: time-varying amplitude in each harmonic and non-flat harmonic-MA-coupled baseline.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467602/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15090578\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15090578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline.
Motion artifacts (MA) cause great variability in a measured arterial pulse signal, and treatment of MA solely as a baseline drift (BD) fails to eliminate its effect on the measured signal. This paper presents a study on the effect of MA at rest (<0.7 Hz) on measured arterial pulse signals using a microfluidic-based tactile sensor. By taking full account of the dynamic behavior of the transmission path from the true pulse signal in an artery to a measured pulse signal at the sensor, the tissue-contact-sensor (TCS) stack, an analytical model of MA in a measured pulse signal is developed. In this model, the TCS stack is treated as a 1DOF system for its dynamic behavior; MA is quantified as the displacement (i.e., BD) and time-varying system parameters (TVSP) of the TCS stack. The mathematical expression of MA in a measured pulse signal reveals that while BD remains as low-frequency additive noise, TVSP causes time-varying harmonics in a measured pulse signal. Further time-frequency analysis (TFA) of measured pulse signals validates the existence of TVSP and, for the first time, reveals its effect on a measured pulse signal: time-varying amplitude in each harmonic and non-flat harmonic-MA-coupled baseline.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.