Jiaxin Gao, Guohao Liu, Yan Liu, Dezhao Zhang, Qinyi He, Qiong Liao, Canwei Du
{"title":"海葵源毒素Avd3i抑制钠通道Nav1.4","authors":"Jiaxin Gao, Guohao Liu, Yan Liu, Dezhao Zhang, Qinyi He, Qiong Liao, Canwei Du","doi":"10.3390/toxins17090461","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels regulate ion transport across cell or organelle membranes, playing an important role in various biological processes. Sodium channel Nav1.4 is critical to initiating and propagating action potentials in skeletal muscles, and its dysfunction is associated with a variety of diseases, such as non-dystrophic myotonias. In this study, U-actitoxin-Avd3i (Avd3i), a Kunitz-type toxin derived from <i>Anemonia viridis</i>, was expressed in prokaryotic systems and was subsequently purified via high-pressure liquid chromatography. Patch clamp recording showed that Avd3i inhibited Nav1.4 in a concentration-dependent manner, with an IC<sub>50</sub> of 25.43 μM. However, the toxin exerted no inhibitory activity in Nav1.5/Nav1.7 channels or Kv1.1/Kv1.3/Kv1.4/Kv4.2 potassium channels. Our study found that the sea anemone-derived toxin Avd3i inhibited sodium channel Nav1.4, providing a novel molecule that can act on the channel.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sea Anemone-Derived Toxin Avd3i Inhibited Sodium Channel Nav1.4.\",\"authors\":\"Jiaxin Gao, Guohao Liu, Yan Liu, Dezhao Zhang, Qinyi He, Qiong Liao, Canwei Du\",\"doi\":\"10.3390/toxins17090461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ion channels regulate ion transport across cell or organelle membranes, playing an important role in various biological processes. Sodium channel Nav1.4 is critical to initiating and propagating action potentials in skeletal muscles, and its dysfunction is associated with a variety of diseases, such as non-dystrophic myotonias. In this study, U-actitoxin-Avd3i (Avd3i), a Kunitz-type toxin derived from <i>Anemonia viridis</i>, was expressed in prokaryotic systems and was subsequently purified via high-pressure liquid chromatography. Patch clamp recording showed that Avd3i inhibited Nav1.4 in a concentration-dependent manner, with an IC<sub>50</sub> of 25.43 μM. However, the toxin exerted no inhibitory activity in Nav1.5/Nav1.7 channels or Kv1.1/Kv1.3/Kv1.4/Kv4.2 potassium channels. Our study found that the sea anemone-derived toxin Avd3i inhibited sodium channel Nav1.4, providing a novel molecule that can act on the channel.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17090461\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Ion channels regulate ion transport across cell or organelle membranes, playing an important role in various biological processes. Sodium channel Nav1.4 is critical to initiating and propagating action potentials in skeletal muscles, and its dysfunction is associated with a variety of diseases, such as non-dystrophic myotonias. In this study, U-actitoxin-Avd3i (Avd3i), a Kunitz-type toxin derived from Anemonia viridis, was expressed in prokaryotic systems and was subsequently purified via high-pressure liquid chromatography. Patch clamp recording showed that Avd3i inhibited Nav1.4 in a concentration-dependent manner, with an IC50 of 25.43 μM. However, the toxin exerted no inhibitory activity in Nav1.5/Nav1.7 channels or Kv1.1/Kv1.3/Kv1.4/Kv4.2 potassium channels. Our study found that the sea anemone-derived toxin Avd3i inhibited sodium channel Nav1.4, providing a novel molecule that can act on the channel.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.