{"title":"肉毒杆菌神经毒素检测方法研究进展。","authors":"Shuo Wang, Huajie Zhang, Yanhua Xue, Yingchao Yang, Liyong Yuan","doi":"10.3390/toxins17090453","DOIUrl":null,"url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNTs), produced by the anaerobic spore-forming bacterium Clostridium botulinum, are among the most potent known biological toxins. BoNTs cause lethal botulism via contaminated food, wound infections, or infant intestinal colonization, posing significant threats to public health. Although the mouse bioassay is still being considered as the gold standard for detecting BoNTs, its drawbacks, including the lengthy experimental duration, high costs, and ethical issues, highlight the urgent need to develop alternative methods to fulfill the detection requirements. In recent years, frequent botulism poisoning incidents haves put forward higher requirements for detection technology. On-site detection is expected to be rapid and immediate, while laboratory detection requires high sensitivity and serotype discrimination capabilities. This review comprehensively introduces current detection approaches, including mouse bioassay, cell-based assays, immunological methods, endopeptidase-mass spectrometry, biosensors, chromatography, and mass spectrometry techniques. Notably, cell-based assays have been used for the potency testing of commercialized botulinum toxin type A and are considered the most promising alternative to the mouse bioassay. Biosensors based on nanomaterials demonstrate advantages in real-time detection due to their rapid response and portability, while endopeptidase-mass spectrometry achieves high sensitivity and effective serotype identification by specifically recognizing toxin-cleaved substrates. Future works shall aim to completely replace MBA, developing a detection system suitable for multiple scenarios such as clinical diagnosis, food safety monitoring, and environmental monitoring. The detection methods should also have matrix compatibility and serotype discrimination capabilities.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research Progress on the Detection Methods of Botulinum Neurotoxin.\",\"authors\":\"Shuo Wang, Huajie Zhang, Yanhua Xue, Yingchao Yang, Liyong Yuan\",\"doi\":\"10.3390/toxins17090453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botulinum neurotoxins (BoNTs), produced by the anaerobic spore-forming bacterium Clostridium botulinum, are among the most potent known biological toxins. BoNTs cause lethal botulism via contaminated food, wound infections, or infant intestinal colonization, posing significant threats to public health. Although the mouse bioassay is still being considered as the gold standard for detecting BoNTs, its drawbacks, including the lengthy experimental duration, high costs, and ethical issues, highlight the urgent need to develop alternative methods to fulfill the detection requirements. In recent years, frequent botulism poisoning incidents haves put forward higher requirements for detection technology. On-site detection is expected to be rapid and immediate, while laboratory detection requires high sensitivity and serotype discrimination capabilities. This review comprehensively introduces current detection approaches, including mouse bioassay, cell-based assays, immunological methods, endopeptidase-mass spectrometry, biosensors, chromatography, and mass spectrometry techniques. Notably, cell-based assays have been used for the potency testing of commercialized botulinum toxin type A and are considered the most promising alternative to the mouse bioassay. Biosensors based on nanomaterials demonstrate advantages in real-time detection due to their rapid response and portability, while endopeptidase-mass spectrometry achieves high sensitivity and effective serotype identification by specifically recognizing toxin-cleaved substrates. Future works shall aim to completely replace MBA, developing a detection system suitable for multiple scenarios such as clinical diagnosis, food safety monitoring, and environmental monitoring. The detection methods should also have matrix compatibility and serotype discrimination capabilities.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17090453\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090453","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research Progress on the Detection Methods of Botulinum Neurotoxin.
Botulinum neurotoxins (BoNTs), produced by the anaerobic spore-forming bacterium Clostridium botulinum, are among the most potent known biological toxins. BoNTs cause lethal botulism via contaminated food, wound infections, or infant intestinal colonization, posing significant threats to public health. Although the mouse bioassay is still being considered as the gold standard for detecting BoNTs, its drawbacks, including the lengthy experimental duration, high costs, and ethical issues, highlight the urgent need to develop alternative methods to fulfill the detection requirements. In recent years, frequent botulism poisoning incidents haves put forward higher requirements for detection technology. On-site detection is expected to be rapid and immediate, while laboratory detection requires high sensitivity and serotype discrimination capabilities. This review comprehensively introduces current detection approaches, including mouse bioassay, cell-based assays, immunological methods, endopeptidase-mass spectrometry, biosensors, chromatography, and mass spectrometry techniques. Notably, cell-based assays have been used for the potency testing of commercialized botulinum toxin type A and are considered the most promising alternative to the mouse bioassay. Biosensors based on nanomaterials demonstrate advantages in real-time detection due to their rapid response and portability, while endopeptidase-mass spectrometry achieves high sensitivity and effective serotype identification by specifically recognizing toxin-cleaved substrates. Future works shall aim to completely replace MBA, developing a detection system suitable for multiple scenarios such as clinical diagnosis, food safety monitoring, and environmental monitoring. The detection methods should also have matrix compatibility and serotype discrimination capabilities.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.