Xiang Wan, Yi Zhang, Yucong Li, Fei Yang, Liqiang Xie
{"title":"菲增强了微囊藻毒素对沉水植物水蛭的毒性。","authors":"Xiang Wan, Yi Zhang, Yucong Li, Fei Yang, Liqiang Xie","doi":"10.3390/toxins17090472","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystin-LR (MC-LR) and phenanthrene (Phen), which commonly co-occur in eutrophic waters, have been extensively studied as individual contaminants, but their combined ecotoxicological effects on submerged macrophytes remain unclear. In this study, we examined the individual and combined toxicity of MC-LR (2, 10, 50, 250, and 1000 μg/L) and Phen (0.2, 1, 5, 25, and 100 μg/L) on the submerged macrophyte <i>Vallisneria natans</i> over a 7-day exposure. Key toxicity biomarkers, including growth, photosynthetic efficiency, and antioxidant responses (catalase, superoxide dismutase, glutathione S-transferase, and malondialdehyde), were evaluated. The results showed that high concentrations of each contaminant alone (MC-LR ≥ 1000 μg/L; Phen ≥ 100 μg/L) significantly inhibited growth and reduced photosynthetic efficiency. In contrast, synergistic toxicity was observed at much lower combined concentrations (≥50 + 5 μg/L), with effects substantially exceeding those of individual exposures. Co-exposure intensified antioxidant activity, but it was insufficient to mitigate oxidative damage. Notably, Phen at concentrations above 25 μg/L significantly enhanced the bioaccumulation of MC-LR in <i>V. natans</i>. These findings demonstrate that environmentally relevant mixtures of MC-LR and Phen induce remarkable toxicity even at concentrations where individual compounds show negligible effects. The results highlight that co-existing cyanotoxins and polycyclic aromatic hydrocarbons may present greater ecological risks than predicted from single-contaminant assessments, underscoring the need to update current ecological risk frameworks for the accurate evaluation of complex pollution scenarios in freshwater systems.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474153/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phenanthrene Amplifies Microcystin-Induced Toxicity in the Submerged Macrophyte <i>Vallisneria natans</i>.\",\"authors\":\"Xiang Wan, Yi Zhang, Yucong Li, Fei Yang, Liqiang Xie\",\"doi\":\"10.3390/toxins17090472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microcystin-LR (MC-LR) and phenanthrene (Phen), which commonly co-occur in eutrophic waters, have been extensively studied as individual contaminants, but their combined ecotoxicological effects on submerged macrophytes remain unclear. In this study, we examined the individual and combined toxicity of MC-LR (2, 10, 50, 250, and 1000 μg/L) and Phen (0.2, 1, 5, 25, and 100 μg/L) on the submerged macrophyte <i>Vallisneria natans</i> over a 7-day exposure. Key toxicity biomarkers, including growth, photosynthetic efficiency, and antioxidant responses (catalase, superoxide dismutase, glutathione S-transferase, and malondialdehyde), were evaluated. The results showed that high concentrations of each contaminant alone (MC-LR ≥ 1000 μg/L; Phen ≥ 100 μg/L) significantly inhibited growth and reduced photosynthetic efficiency. In contrast, synergistic toxicity was observed at much lower combined concentrations (≥50 + 5 μg/L), with effects substantially exceeding those of individual exposures. Co-exposure intensified antioxidant activity, but it was insufficient to mitigate oxidative damage. Notably, Phen at concentrations above 25 μg/L significantly enhanced the bioaccumulation of MC-LR in <i>V. natans</i>. These findings demonstrate that environmentally relevant mixtures of MC-LR and Phen induce remarkable toxicity even at concentrations where individual compounds show negligible effects. The results highlight that co-existing cyanotoxins and polycyclic aromatic hydrocarbons may present greater ecological risks than predicted from single-contaminant assessments, underscoring the need to update current ecological risk frameworks for the accurate evaluation of complex pollution scenarios in freshwater systems.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474153/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17090472\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090472","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Phenanthrene Amplifies Microcystin-Induced Toxicity in the Submerged Macrophyte Vallisneria natans.
Microcystin-LR (MC-LR) and phenanthrene (Phen), which commonly co-occur in eutrophic waters, have been extensively studied as individual contaminants, but their combined ecotoxicological effects on submerged macrophytes remain unclear. In this study, we examined the individual and combined toxicity of MC-LR (2, 10, 50, 250, and 1000 μg/L) and Phen (0.2, 1, 5, 25, and 100 μg/L) on the submerged macrophyte Vallisneria natans over a 7-day exposure. Key toxicity biomarkers, including growth, photosynthetic efficiency, and antioxidant responses (catalase, superoxide dismutase, glutathione S-transferase, and malondialdehyde), were evaluated. The results showed that high concentrations of each contaminant alone (MC-LR ≥ 1000 μg/L; Phen ≥ 100 μg/L) significantly inhibited growth and reduced photosynthetic efficiency. In contrast, synergistic toxicity was observed at much lower combined concentrations (≥50 + 5 μg/L), with effects substantially exceeding those of individual exposures. Co-exposure intensified antioxidant activity, but it was insufficient to mitigate oxidative damage. Notably, Phen at concentrations above 25 μg/L significantly enhanced the bioaccumulation of MC-LR in V. natans. These findings demonstrate that environmentally relevant mixtures of MC-LR and Phen induce remarkable toxicity even at concentrations where individual compounds show negligible effects. The results highlight that co-existing cyanotoxins and polycyclic aromatic hydrocarbons may present greater ecological risks than predicted from single-contaminant assessments, underscoring the need to update current ecological risk frameworks for the accurate evaluation of complex pollution scenarios in freshwater systems.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.