{"title":"新西兰Aotearoa两次太平洋Alexandrium pacificum开花期间的原核和真核群落演替及潜在寄生相互作用。","authors":"Laura Biessy, Lincoln Mackenzie, Kirsty F Smith","doi":"10.3390/toxins17090465","DOIUrl":null,"url":null,"abstract":"<p><p>Harmful algal blooms (HABs), caused by the dinoflagellate <i>Alexandrium pacificum</i>, are increasingly frequent in the Marlborough Sounds, an important aquaculture region in Aotearoa New Zealand. <i>Alexandrium pacificum</i> produces paralytic shellfish toxins and blooms cause significant economic and ecological disruptions through contamination of edible shellfish. High-throughput sequencing of prokaryotic and eukaryotic communities was used to investigate community dynamics during bloom events across two consecutive summers. Distinct successional shifts were observed, with prokaryotic communities dominated by Rhodobacterales and Flavobacteriales during blooms, and increased abundance of the SAR11 clade (Pelagibacterales) post-bloom. Eukaryotic diversity was dominated by <i>Alexandrium</i> species (Gonyaulacales) during the bloom, and subsequently shifted towards Syndiniales, Gymnodiniales, and Peridiniales as blooms collapsed. Significant correlations indicated potential ecological roles for these taxa in bloom regulation, particularly Syndiniales, which could indicate parasitic interactions. Depth profiles revealed consistent microbial composition throughout the water column, validating depth-integrated sampling strategies for community studies. This research describes changes in the composition of microbial communities during two <i>A. pacificum</i> blooms, suggesting that species interactions (e.g., via parasitism) may play a role shaping bloom dynamics. Further studies incorporating environmental parameters, especially nutrient dynamics linked to anthropogenic activities, are necessary to better understand the drivers of blooms in this important aquaculture region.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474254/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prokaryotic and Eukaryotic Community Succession and Potential Parasitic Interactions During Two <i>Alexandrium pacificum</i> Blooms in Aotearoa New Zealand.\",\"authors\":\"Laura Biessy, Lincoln Mackenzie, Kirsty F Smith\",\"doi\":\"10.3390/toxins17090465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Harmful algal blooms (HABs), caused by the dinoflagellate <i>Alexandrium pacificum</i>, are increasingly frequent in the Marlborough Sounds, an important aquaculture region in Aotearoa New Zealand. <i>Alexandrium pacificum</i> produces paralytic shellfish toxins and blooms cause significant economic and ecological disruptions through contamination of edible shellfish. High-throughput sequencing of prokaryotic and eukaryotic communities was used to investigate community dynamics during bloom events across two consecutive summers. Distinct successional shifts were observed, with prokaryotic communities dominated by Rhodobacterales and Flavobacteriales during blooms, and increased abundance of the SAR11 clade (Pelagibacterales) post-bloom. Eukaryotic diversity was dominated by <i>Alexandrium</i> species (Gonyaulacales) during the bloom, and subsequently shifted towards Syndiniales, Gymnodiniales, and Peridiniales as blooms collapsed. Significant correlations indicated potential ecological roles for these taxa in bloom regulation, particularly Syndiniales, which could indicate parasitic interactions. Depth profiles revealed consistent microbial composition throughout the water column, validating depth-integrated sampling strategies for community studies. This research describes changes in the composition of microbial communities during two <i>A. pacificum</i> blooms, suggesting that species interactions (e.g., via parasitism) may play a role shaping bloom dynamics. Further studies incorporating environmental parameters, especially nutrient dynamics linked to anthropogenic activities, are necessary to better understand the drivers of blooms in this important aquaculture region.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474254/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17090465\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090465","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Prokaryotic and Eukaryotic Community Succession and Potential Parasitic Interactions During Two Alexandrium pacificum Blooms in Aotearoa New Zealand.
Harmful algal blooms (HABs), caused by the dinoflagellate Alexandrium pacificum, are increasingly frequent in the Marlborough Sounds, an important aquaculture region in Aotearoa New Zealand. Alexandrium pacificum produces paralytic shellfish toxins and blooms cause significant economic and ecological disruptions through contamination of edible shellfish. High-throughput sequencing of prokaryotic and eukaryotic communities was used to investigate community dynamics during bloom events across two consecutive summers. Distinct successional shifts were observed, with prokaryotic communities dominated by Rhodobacterales and Flavobacteriales during blooms, and increased abundance of the SAR11 clade (Pelagibacterales) post-bloom. Eukaryotic diversity was dominated by Alexandrium species (Gonyaulacales) during the bloom, and subsequently shifted towards Syndiniales, Gymnodiniales, and Peridiniales as blooms collapsed. Significant correlations indicated potential ecological roles for these taxa in bloom regulation, particularly Syndiniales, which could indicate parasitic interactions. Depth profiles revealed consistent microbial composition throughout the water column, validating depth-integrated sampling strategies for community studies. This research describes changes in the composition of microbial communities during two A. pacificum blooms, suggesting that species interactions (e.g., via parasitism) may play a role shaping bloom dynamics. Further studies incorporating environmental parameters, especially nutrient dynamics linked to anthropogenic activities, are necessary to better understand the drivers of blooms in this important aquaculture region.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.