Naga Adithya Chandra Pandurangi, Manel M Santafe, Angels Tudo, Nagihan Ozsoy, Fransesc X Sureda, Mark L Dallas, Ioanis Katakis
{"title":"基于体外电生理和电化学的氧化铟锡电极高效快速检测河豚毒素。","authors":"Naga Adithya Chandra Pandurangi, Manel M Santafe, Angels Tudo, Nagihan Ozsoy, Fransesc X Sureda, Mark L Dallas, Ioanis Katakis","doi":"10.3390/toxins17090462","DOIUrl":null,"url":null,"abstract":"<p><p>The real-time, cost-effective detection of marine toxins like tetrodotoxin (TTX) remains a significant challenge for the scientific community. Traditional methods, including cell-based assays (CBAs), high-performance liquid chromatography (HPLC), and automated patch clamp (APC), are time-consuming, requiring expensive lab-based equipment and highly trained personnel. Enzyme-linked immunosorbent assays (ELISAs), lateral flow assays (LFAs), and immunosensors may not be suitable for toxin analogues. Thus, a simplified approach has been developed in this study, which involves the electrophysiological and electrochemical interrogation of N2a cells grown on ITO-coated glass electrodes by measuring extracellular field potentials (EFP) in conjunction with whole-cell patch clamp recordings and electrochemical impedance spectroscopy (EIS) measurements both before and after incubation with TTX. The ITO substrate proved biocompatible and non-toxic for N2a cells. TTX exposure caused 102% inhibition in EFP values at 300 nM, confirmed by sodium current inhibition of 93% at 300 nM and 22% at 1 nM in patch clamp studies (IC<sub>50</sub> = 6.7 nM). EIS measurements indicated concentration-dependent impedance changes in the range of 6-300 nM. This research aims to provide a proof-of-concept for integration of electrophysiological and electrochemical approaches to simplify toxin detection systems.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474310/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective and Rapid Detection of Tetrodotoxin Using Indium Tin Oxide Electrodes via In Vitro Electrophysiology and Electrochemistry.\",\"authors\":\"Naga Adithya Chandra Pandurangi, Manel M Santafe, Angels Tudo, Nagihan Ozsoy, Fransesc X Sureda, Mark L Dallas, Ioanis Katakis\",\"doi\":\"10.3390/toxins17090462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The real-time, cost-effective detection of marine toxins like tetrodotoxin (TTX) remains a significant challenge for the scientific community. Traditional methods, including cell-based assays (CBAs), high-performance liquid chromatography (HPLC), and automated patch clamp (APC), are time-consuming, requiring expensive lab-based equipment and highly trained personnel. Enzyme-linked immunosorbent assays (ELISAs), lateral flow assays (LFAs), and immunosensors may not be suitable for toxin analogues. Thus, a simplified approach has been developed in this study, which involves the electrophysiological and electrochemical interrogation of N2a cells grown on ITO-coated glass electrodes by measuring extracellular field potentials (EFP) in conjunction with whole-cell patch clamp recordings and electrochemical impedance spectroscopy (EIS) measurements both before and after incubation with TTX. The ITO substrate proved biocompatible and non-toxic for N2a cells. TTX exposure caused 102% inhibition in EFP values at 300 nM, confirmed by sodium current inhibition of 93% at 300 nM and 22% at 1 nM in patch clamp studies (IC<sub>50</sub> = 6.7 nM). EIS measurements indicated concentration-dependent impedance changes in the range of 6-300 nM. This research aims to provide a proof-of-concept for integration of electrophysiological and electrochemical approaches to simplify toxin detection systems.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17090462\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Cost-Effective and Rapid Detection of Tetrodotoxin Using Indium Tin Oxide Electrodes via In Vitro Electrophysiology and Electrochemistry.
The real-time, cost-effective detection of marine toxins like tetrodotoxin (TTX) remains a significant challenge for the scientific community. Traditional methods, including cell-based assays (CBAs), high-performance liquid chromatography (HPLC), and automated patch clamp (APC), are time-consuming, requiring expensive lab-based equipment and highly trained personnel. Enzyme-linked immunosorbent assays (ELISAs), lateral flow assays (LFAs), and immunosensors may not be suitable for toxin analogues. Thus, a simplified approach has been developed in this study, which involves the electrophysiological and electrochemical interrogation of N2a cells grown on ITO-coated glass electrodes by measuring extracellular field potentials (EFP) in conjunction with whole-cell patch clamp recordings and electrochemical impedance spectroscopy (EIS) measurements both before and after incubation with TTX. The ITO substrate proved biocompatible and non-toxic for N2a cells. TTX exposure caused 102% inhibition in EFP values at 300 nM, confirmed by sodium current inhibition of 93% at 300 nM and 22% at 1 nM in patch clamp studies (IC50 = 6.7 nM). EIS measurements indicated concentration-dependent impedance changes in the range of 6-300 nM. This research aims to provide a proof-of-concept for integration of electrophysiological and electrochemical approaches to simplify toxin detection systems.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.