Martina Saltafossi, Andrea Zaccaro, Daniel S Kluger, Mauro Gianni Perrucci, Francesca Ferri, Marcello Costantini
{"title":"呼吸促进多感觉整合过程中的行为。","authors":"Martina Saltafossi, Andrea Zaccaro, Daniel S Kluger, Mauro Gianni Perrucci, Francesca Ferri, Marcello Costantini","doi":"10.1111/psyp.70145","DOIUrl":null,"url":null,"abstract":"<p><p>The brain processes information from the external environment alongside signals generated by the body. Among bodily rhythms, respiration emerges as a key modulator of sensory processing. Multisensory integration, the non-linear combination of information from multiple senses to reduce environmental uncertainty, may be influenced by respiratory dynamics. This study investigated how respiration modulates reaction times and multisensory integration in a simple detection task. Forty healthy participants were presented with unimodal (Auditory, Visual, Tactile) and bimodal (Audio-Tactile, Audio-Visual, Visuo-Tactile) stimuli while their respiratory activity was recorded. Results revealed that reaction times systematically varied with respiration, with faster responses during peak inspiration and early expiration but slower responses during the expiration-to-inspiration transition. Applying the race model inequality approach to quantify multisensory integration, we found that Audio-Tactile and Audio-Visual stimuli exhibited the highest integration during the expiration-to-inspiration phase. These findings conceivably reflect respiration phase-locked changes in cortical excitability which in turn orchestrates multisensory integration. Interestingly, participants also tended to adapt their respiratory cycles, aligning response onsets preferentially with early expiration. This suggests that, rather than a mere bottom-up mechanism, respiration is actively adjusted to maximize the signal-to-noise balance between interoceptive and exteroceptive signals.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":"62 9","pages":"e70145"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Respiration Facilitates Behavior During Multisensory Integration.\",\"authors\":\"Martina Saltafossi, Andrea Zaccaro, Daniel S Kluger, Mauro Gianni Perrucci, Francesca Ferri, Marcello Costantini\",\"doi\":\"10.1111/psyp.70145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain processes information from the external environment alongside signals generated by the body. Among bodily rhythms, respiration emerges as a key modulator of sensory processing. Multisensory integration, the non-linear combination of information from multiple senses to reduce environmental uncertainty, may be influenced by respiratory dynamics. This study investigated how respiration modulates reaction times and multisensory integration in a simple detection task. Forty healthy participants were presented with unimodal (Auditory, Visual, Tactile) and bimodal (Audio-Tactile, Audio-Visual, Visuo-Tactile) stimuli while their respiratory activity was recorded. Results revealed that reaction times systematically varied with respiration, with faster responses during peak inspiration and early expiration but slower responses during the expiration-to-inspiration transition. Applying the race model inequality approach to quantify multisensory integration, we found that Audio-Tactile and Audio-Visual stimuli exhibited the highest integration during the expiration-to-inspiration phase. These findings conceivably reflect respiration phase-locked changes in cortical excitability which in turn orchestrates multisensory integration. Interestingly, participants also tended to adapt their respiratory cycles, aligning response onsets preferentially with early expiration. This suggests that, rather than a mere bottom-up mechanism, respiration is actively adjusted to maximize the signal-to-noise balance between interoceptive and exteroceptive signals.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":\"62 9\",\"pages\":\"e70145\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.70145\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.70145","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Respiration Facilitates Behavior During Multisensory Integration.
The brain processes information from the external environment alongside signals generated by the body. Among bodily rhythms, respiration emerges as a key modulator of sensory processing. Multisensory integration, the non-linear combination of information from multiple senses to reduce environmental uncertainty, may be influenced by respiratory dynamics. This study investigated how respiration modulates reaction times and multisensory integration in a simple detection task. Forty healthy participants were presented with unimodal (Auditory, Visual, Tactile) and bimodal (Audio-Tactile, Audio-Visual, Visuo-Tactile) stimuli while their respiratory activity was recorded. Results revealed that reaction times systematically varied with respiration, with faster responses during peak inspiration and early expiration but slower responses during the expiration-to-inspiration transition. Applying the race model inequality approach to quantify multisensory integration, we found that Audio-Tactile and Audio-Visual stimuli exhibited the highest integration during the expiration-to-inspiration phase. These findings conceivably reflect respiration phase-locked changes in cortical excitability which in turn orchestrates multisensory integration. Interestingly, participants also tended to adapt their respiratory cycles, aligning response onsets preferentially with early expiration. This suggests that, rather than a mere bottom-up mechanism, respiration is actively adjusted to maximize the signal-to-noise balance between interoceptive and exteroceptive signals.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.