Carolina Sousa Monteiro, Eugénia Pinto, Rosalía López-Ruiz, Jesús Marín-Sáez, Antonia Garrido Frenich, Miguel A Faria, Sara C Cunha
{"title":"水稻加工链中真菌污染和真菌毒素水平的综合评估。","authors":"Carolina Sousa Monteiro, Eugénia Pinto, Rosalía López-Ruiz, Jesús Marín-Sáez, Antonia Garrido Frenich, Miguel A Faria, Sara C Cunha","doi":"10.3390/toxins17090468","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the occurrence of fungi and mycotoxins throughout the rice processing chain, from paddy rice to final white rice, in two rice varieties (variety I and variety II). A total of 75 fungal isolates were identified, belonging to the genera <i>Penicillium</i>, <i>Alternaria</i>, <i>Aspergillus</i>, <i>Fusarium</i>, and <i>Talaromyces</i>. Variety I exhibited a higher prevalence of <i>Penicillium</i> and <i>Alternaria</i>, whereas Variety II was dominated mainly by <i>Alternaria</i>, accounting for 63% of all isolates. Multi-mycotoxin screening of 22 mycotoxins revealed contamination by tenuazonic acid (TeA), zearalenone (ZEN), and 15-acetyl-deoxynivalenol (15-AcDON), with TeA concentrations exceeding 4000 µg/kg in whitened rice of variety II. Cluster analysis showed paddy and brown rice grouping together due to higher fungal loads and toxin levels, whereas whitened and final white rice clustered separately, reflecting reduced fungal counts but persistence of TeA, 15-AcDON, ZEN, and citrinin (CIT). The co-clustering of <i>Alternaria</i> with TeA and ZEN indicates strong field-related contamination. Although processing significantly decreased fungal loads, residual toxins persisted, emphasizing that rice polishing does not fully mitigate mycotoxin risks. These findings underscore the need for comprehensive surveillance and integrated management practices across the rice supply chain to minimize potential health hazards associated with fungal contaminants and their toxic metabolites.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474497/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Assessment of Fungi Contamination and Mycotoxins Levels Across the Rice Processing Chain.\",\"authors\":\"Carolina Sousa Monteiro, Eugénia Pinto, Rosalía López-Ruiz, Jesús Marín-Sáez, Antonia Garrido Frenich, Miguel A Faria, Sara C Cunha\",\"doi\":\"10.3390/toxins17090468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the occurrence of fungi and mycotoxins throughout the rice processing chain, from paddy rice to final white rice, in two rice varieties (variety I and variety II). A total of 75 fungal isolates were identified, belonging to the genera <i>Penicillium</i>, <i>Alternaria</i>, <i>Aspergillus</i>, <i>Fusarium</i>, and <i>Talaromyces</i>. Variety I exhibited a higher prevalence of <i>Penicillium</i> and <i>Alternaria</i>, whereas Variety II was dominated mainly by <i>Alternaria</i>, accounting for 63% of all isolates. Multi-mycotoxin screening of 22 mycotoxins revealed contamination by tenuazonic acid (TeA), zearalenone (ZEN), and 15-acetyl-deoxynivalenol (15-AcDON), with TeA concentrations exceeding 4000 µg/kg in whitened rice of variety II. Cluster analysis showed paddy and brown rice grouping together due to higher fungal loads and toxin levels, whereas whitened and final white rice clustered separately, reflecting reduced fungal counts but persistence of TeA, 15-AcDON, ZEN, and citrinin (CIT). The co-clustering of <i>Alternaria</i> with TeA and ZEN indicates strong field-related contamination. Although processing significantly decreased fungal loads, residual toxins persisted, emphasizing that rice polishing does not fully mitigate mycotoxin risks. These findings underscore the need for comprehensive surveillance and integrated management practices across the rice supply chain to minimize potential health hazards associated with fungal contaminants and their toxic metabolites.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474497/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17090468\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17090468","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Integrated Assessment of Fungi Contamination and Mycotoxins Levels Across the Rice Processing Chain.
This study investigated the occurrence of fungi and mycotoxins throughout the rice processing chain, from paddy rice to final white rice, in two rice varieties (variety I and variety II). A total of 75 fungal isolates were identified, belonging to the genera Penicillium, Alternaria, Aspergillus, Fusarium, and Talaromyces. Variety I exhibited a higher prevalence of Penicillium and Alternaria, whereas Variety II was dominated mainly by Alternaria, accounting for 63% of all isolates. Multi-mycotoxin screening of 22 mycotoxins revealed contamination by tenuazonic acid (TeA), zearalenone (ZEN), and 15-acetyl-deoxynivalenol (15-AcDON), with TeA concentrations exceeding 4000 µg/kg in whitened rice of variety II. Cluster analysis showed paddy and brown rice grouping together due to higher fungal loads and toxin levels, whereas whitened and final white rice clustered separately, reflecting reduced fungal counts but persistence of TeA, 15-AcDON, ZEN, and citrinin (CIT). The co-clustering of Alternaria with TeA and ZEN indicates strong field-related contamination. Although processing significantly decreased fungal loads, residual toxins persisted, emphasizing that rice polishing does not fully mitigate mycotoxin risks. These findings underscore the need for comprehensive surveillance and integrated management practices across the rice supply chain to minimize potential health hazards associated with fungal contaminants and their toxic metabolites.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.