单脉冲飞秒激光对Pb(Zr,Ti)O3超薄膜微结构和铁电/压电响应的巨调制

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-20 DOI:10.3390/nano15181450
Bin Wang, Mingchen Du, Hu Wang, Mengmeng Wang, Dawei Li
{"title":"单脉冲飞秒激光对Pb(Zr,Ti)O3超薄膜微结构和铁电/压电响应的巨调制","authors":"Bin Wang, Mingchen Du, Hu Wang, Mengmeng Wang, Dawei Li","doi":"10.3390/nano15181450","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroelectric oxides, such as Pb(Zr,Ti)O<sub>3</sub> (PZT), have been shown to maintain stable ferroelectricity even in ultrathin film configurations. However, achieving controllable modulation of microstructure and physical responses in these ultrathin films remains challenging, limiting their potential applications in modern nanoelectronics and optoelectronics. Here, we propose a single-pulse femtosecond (fs) laser micromachining technique for high-precision engineering of microstructure and ferroelectric/piezoelectric responses in ultrathin PZT films. The results show that various microstructures can be selectively fabricated through precise control of fs laser fluence. Specifically, nano-concave arrays are formed via low-fluence laser irradiation, which is mainly attributed to the fs laser peening effect. In contrast, nano-volcano (nano-cave) structures are generated when the laser fluence is close to or reaches the ablation threshold. Additionally, applying an fs laser pulse with fluence exceeding a critical threshold enables the formation of nano-cave structures with controlled depth and width in PZT/Pt/SiO<sub>2</sub> multilayers. Piezoresponse force microscopy measurements demonstrate that the laser peening process significantly enhances the piezoelectric response while exerting minimal influence on the coercive field of PZT thin films. This improvement is attributed to the enhanced electromechanical energy transfer and concentrated compressive stresses distribution in PZT thin films resulting from the laser peening effect. Our study not only offers an effective strategy for microstructure and property engineering in ferroelectric materials at the nanoscale but also provides new insights into the underlying mechanism of ultrafast laser processing in ferroelectric thin films.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472458/pdf/","citationCount":"0","resultStr":"{\"title\":\"Giant Modulation of Microstructure and Ferroelectric/Piezoelectric Responses in Pb(Zr,Ti)O<sub>3</sub> Ultrathin Films via Single-Pulse Femtosecond Laser.\",\"authors\":\"Bin Wang, Mingchen Du, Hu Wang, Mengmeng Wang, Dawei Li\",\"doi\":\"10.3390/nano15181450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroelectric oxides, such as Pb(Zr,Ti)O<sub>3</sub> (PZT), have been shown to maintain stable ferroelectricity even in ultrathin film configurations. However, achieving controllable modulation of microstructure and physical responses in these ultrathin films remains challenging, limiting their potential applications in modern nanoelectronics and optoelectronics. Here, we propose a single-pulse femtosecond (fs) laser micromachining technique for high-precision engineering of microstructure and ferroelectric/piezoelectric responses in ultrathin PZT films. The results show that various microstructures can be selectively fabricated through precise control of fs laser fluence. Specifically, nano-concave arrays are formed via low-fluence laser irradiation, which is mainly attributed to the fs laser peening effect. In contrast, nano-volcano (nano-cave) structures are generated when the laser fluence is close to or reaches the ablation threshold. Additionally, applying an fs laser pulse with fluence exceeding a critical threshold enables the formation of nano-cave structures with controlled depth and width in PZT/Pt/SiO<sub>2</sub> multilayers. Piezoresponse force microscopy measurements demonstrate that the laser peening process significantly enhances the piezoelectric response while exerting minimal influence on the coercive field of PZT thin films. This improvement is attributed to the enhanced electromechanical energy transfer and concentrated compressive stresses distribution in PZT thin films resulting from the laser peening effect. Our study not only offers an effective strategy for microstructure and property engineering in ferroelectric materials at the nanoscale but also provides new insights into the underlying mechanism of ultrafast laser processing in ferroelectric thin films.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181450\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181450","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁电氧化物,如Pb(Zr,Ti)O3 (PZT),即使在超薄膜结构中也能保持稳定的铁电性。然而,在这些超薄膜中实现微观结构和物理响应的可控调制仍然具有挑战性,限制了它们在现代纳米电子学和光电子学中的潜在应用。在这里,我们提出了一种单脉冲飞秒激光微加工技术,用于超薄PZT薄膜的微结构和铁电/压电响应的高精度工程。结果表明,通过精确控制激光通量,可以选择性地制备各种微结构。其中,低通量激光照射形成了纳米凹阵列,这主要归因于激光强化效应。而当激光通量接近或达到烧蚀阈值时,则产生纳米火山(纳米洞穴)结构。此外,施加超过临界阈值的fs激光脉冲,可以在PZT/Pt/SiO2多层膜中形成深度和宽度可控的纳米洞穴结构。压电响应力显微镜测量结果表明,激光强化过程显著提高了压电响应,而对PZT薄膜的矫顽力场影响很小。这种改善是由于激光强化效应增强了PZT薄膜的机电能量传递和集中了压应力分布。我们的研究不仅为铁电材料的纳米级微观结构和性能工程提供了有效的策略,而且为铁电薄膜超快激光加工的潜在机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Giant Modulation of Microstructure and Ferroelectric/Piezoelectric Responses in Pb(Zr,Ti)O3 Ultrathin Films via Single-Pulse Femtosecond Laser.

Ferroelectric oxides, such as Pb(Zr,Ti)O3 (PZT), have been shown to maintain stable ferroelectricity even in ultrathin film configurations. However, achieving controllable modulation of microstructure and physical responses in these ultrathin films remains challenging, limiting their potential applications in modern nanoelectronics and optoelectronics. Here, we propose a single-pulse femtosecond (fs) laser micromachining technique for high-precision engineering of microstructure and ferroelectric/piezoelectric responses in ultrathin PZT films. The results show that various microstructures can be selectively fabricated through precise control of fs laser fluence. Specifically, nano-concave arrays are formed via low-fluence laser irradiation, which is mainly attributed to the fs laser peening effect. In contrast, nano-volcano (nano-cave) structures are generated when the laser fluence is close to or reaches the ablation threshold. Additionally, applying an fs laser pulse with fluence exceeding a critical threshold enables the formation of nano-cave structures with controlled depth and width in PZT/Pt/SiO2 multilayers. Piezoresponse force microscopy measurements demonstrate that the laser peening process significantly enhances the piezoelectric response while exerting minimal influence on the coercive field of PZT thin films. This improvement is attributed to the enhanced electromechanical energy transfer and concentrated compressive stresses distribution in PZT thin films resulting from the laser peening effect. Our study not only offers an effective strategy for microstructure and property engineering in ferroelectric materials at the nanoscale but also provides new insights into the underlying mechanism of ultrafast laser processing in ferroelectric thin films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信