提高辣椒的营养品质和抗氧化活性绿色合成ZnO纳米颗粒(ZnONPs)叶面施用对果实的影响。

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-18 DOI:10.3390/nano15181440
Daniela Monserrat Sánchez-Pérez, Jolanta E Marszalek, Jorge Armando Meza-Velázquez, David Francisco Lafuente-Rincon, Maria Teresa Salazar-Ramírez, Selenne Yuridia Márquez-Guerrero, Maria Guadalupe Pineda-Escareño, Agustina Ramírez Moreno, Erika Flores-Loyola
{"title":"提高辣椒的营养品质和抗氧化活性绿色合成ZnO纳米颗粒(ZnONPs)叶面施用对果实的影响。","authors":"Daniela Monserrat Sánchez-Pérez, Jolanta E Marszalek, Jorge Armando Meza-Velázquez, David Francisco Lafuente-Rincon, Maria Teresa Salazar-Ramírez, Selenne Yuridia Márquez-Guerrero, Maria Guadalupe Pineda-Escareño, Agustina Ramírez Moreno, Erika Flores-Loyola","doi":"10.3390/nano15181440","DOIUrl":null,"url":null,"abstract":"<p><p>The application of zinc oxide nanoparticles prepared by green synthesis (GS-ZnONPs) has demonstrated essential benefits in boosting the clean and sustainable production of agricultural crops worldwide. In this part of the study we evaluate the effect of GS-ZnONPs foliar spraying on the yield, nutraceutical quality, capsaicin concentration, and antioxidant metabolism of chili fruit (<i>Capsicum annuum</i> L., CHISER-522 variety) grown under greenhouse conditions. GS-ZnONPs treatments were applied at concentrations of 10, 20, 30, 40, and 50 ppm every 15 days post-transplant, with the control group treated only with distilled water. The results indicated that treatments with 40 and 50 ppm of GS-ZnONPs significantly improved fruit yield, length, and fruit amount. At the same time, the concentrations of 30 and 40 ppm significantly increased the levels of vitamin C, bioactive compounds, and antioxidant capacity, indicating a better nutraceutical quality of the fruit. In addition, an increase in the catalase activity and the content of macro and micro-minerals in the fruit treated with GS-ZnONPs was observed. Our results suggest that the foliar application of GS-ZnONPs acts as a nanobioestimulant, offering an excellent biotechnological tool for developing agroecological strategies to increase the nutraceutical and antioxidant quality of chili pepper fruit.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472454/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Nutraceutical Quality and Antioxidant Activity in Chili Pepper (<i>Capsicum annuum</i> L.) Fruit by Foliar Application of Green-Synthesized ZnO Nanoparticles (ZnONPs).\",\"authors\":\"Daniela Monserrat Sánchez-Pérez, Jolanta E Marszalek, Jorge Armando Meza-Velázquez, David Francisco Lafuente-Rincon, Maria Teresa Salazar-Ramírez, Selenne Yuridia Márquez-Guerrero, Maria Guadalupe Pineda-Escareño, Agustina Ramírez Moreno, Erika Flores-Loyola\",\"doi\":\"10.3390/nano15181440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of zinc oxide nanoparticles prepared by green synthesis (GS-ZnONPs) has demonstrated essential benefits in boosting the clean and sustainable production of agricultural crops worldwide. In this part of the study we evaluate the effect of GS-ZnONPs foliar spraying on the yield, nutraceutical quality, capsaicin concentration, and antioxidant metabolism of chili fruit (<i>Capsicum annuum</i> L., CHISER-522 variety) grown under greenhouse conditions. GS-ZnONPs treatments were applied at concentrations of 10, 20, 30, 40, and 50 ppm every 15 days post-transplant, with the control group treated only with distilled water. The results indicated that treatments with 40 and 50 ppm of GS-ZnONPs significantly improved fruit yield, length, and fruit amount. At the same time, the concentrations of 30 and 40 ppm significantly increased the levels of vitamin C, bioactive compounds, and antioxidant capacity, indicating a better nutraceutical quality of the fruit. In addition, an increase in the catalase activity and the content of macro and micro-minerals in the fruit treated with GS-ZnONPs was observed. Our results suggest that the foliar application of GS-ZnONPs acts as a nanobioestimulant, offering an excellent biotechnological tool for developing agroecological strategies to increase the nutraceutical and antioxidant quality of chili pepper fruit.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181440\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181440","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

绿色合成制备的氧化锌纳米颗粒(GS-ZnONPs)在促进全球农作物清洁和可持续生产方面具有重要的应用价值。本研究评价了GS-ZnONPs叶面喷施对温室条件下辣椒(CHISER-522品种)产量、营养品质、辣椒素浓度和抗氧化代谢的影响。移植后每15天分别以10、20、30、40和50 ppm的浓度施用GS-ZnONPs处理,对照组仅用蒸馏水处理。结果表明,40和50 ppm的GS-ZnONPs处理显著提高了果实的产量、长度和数量。同时,30和40 ppm的浓度显著提高了水果的维生素C、生物活性化合物和抗氧化能力,表明水果具有更好的营养保健品质。此外,GS-ZnONPs处理后的果实过氧化氢酶活性和宏微量元素含量均有显著提高。研究结果表明,叶面施用GS-ZnONPs具有纳米生物刺激作用,为制定提高辣椒果实营养和抗氧化品质的农业生态策略提供了良好的生物技术工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Nutraceutical Quality and Antioxidant Activity in Chili Pepper (Capsicum annuum L.) Fruit by Foliar Application of Green-Synthesized ZnO Nanoparticles (ZnONPs).

The application of zinc oxide nanoparticles prepared by green synthesis (GS-ZnONPs) has demonstrated essential benefits in boosting the clean and sustainable production of agricultural crops worldwide. In this part of the study we evaluate the effect of GS-ZnONPs foliar spraying on the yield, nutraceutical quality, capsaicin concentration, and antioxidant metabolism of chili fruit (Capsicum annuum L., CHISER-522 variety) grown under greenhouse conditions. GS-ZnONPs treatments were applied at concentrations of 10, 20, 30, 40, and 50 ppm every 15 days post-transplant, with the control group treated only with distilled water. The results indicated that treatments with 40 and 50 ppm of GS-ZnONPs significantly improved fruit yield, length, and fruit amount. At the same time, the concentrations of 30 and 40 ppm significantly increased the levels of vitamin C, bioactive compounds, and antioxidant capacity, indicating a better nutraceutical quality of the fruit. In addition, an increase in the catalase activity and the content of macro and micro-minerals in the fruit treated with GS-ZnONPs was observed. Our results suggest that the foliar application of GS-ZnONPs acts as a nanobioestimulant, offering an excellent biotechnological tool for developing agroecological strategies to increase the nutraceutical and antioxidant quality of chili pepper fruit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信