硅片上富碳碳涂层作为生物传感表面具有稳定的生物分子结合能力。

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-09 DOI:10.3390/nano15181384
Dimitra Tsounidi, Panagiota Petrou, Mariya Aleksandrova, Tsvetozar Tsanev, Angeliki Tserepi, Evangelos Gogolides, Andrzej Bernasik, Kamil Awsiuk, Natalia Janiszewska, Andrzej Budkowski, Ioannis Raptis
{"title":"硅片上富碳碳涂层作为生物传感表面具有稳定的生物分子结合能力。","authors":"Dimitra Tsounidi, Panagiota Petrou, Mariya Aleksandrova, Tsvetozar Tsanev, Angeliki Tserepi, Evangelos Gogolides, Andrzej Bernasik, Kamil Awsiuk, Natalia Janiszewska, Andrzej Budkowski, Ioannis Raptis","doi":"10.3390/nano15181384","DOIUrl":null,"url":null,"abstract":"<p><p>Carbyne-containing materials offer significant potential for biosensor applications due to their unique chemical and mechanical properties. In this study, carbyne-enriched carbon coatings deposited on SiO<sub>2</sub>/Si chips using ion-assisted pulse-plasma deposition were evaluated for the first time as substrates for optical biosensing. At first, the carbyne-enriched coatings were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Atomic Force Microscopy, and the sessile drop method to assess their composition, structure, and wettability. After that, chips with carbyne-enriched coatings were modified with biomolecules through physical absorption or covalent bonding, and the respective biomolecular interactions were monitored in real-time by White Light Reflectance Spectroscopy (WLRS). In both cases, SiO<sub>2</sub>/Si chips modified with an aminosilane were used as reference substrates. Physical adsorption was tested through immobilization of an antibody against C-reactive protein (CRP) to enable its immunochemical detection, whereas covalent bonding was tested through coupling of biotin and monitoring its reaction with streptavidin. It was found that the carbyne-enriched carbon-coated chips retained both their antibody adsorption capability and their covalent bonding ability for over 18 months, while the modified with aminosilane SiO<sub>2</sub>/Si chips lost 90% of their antibody adsorption capacity and covalent bonding ability after two months of storage. These findings highlight the strong potential of carbyne-enriched carbon-coated chips as robust biosensing substrates, with applications extending beyond WLRS.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Carbyne-Enriched Carbon Coatings on Silicon Chips as Biosensing Surfaces with Stable-over-Time Biomolecule Binding Capacity.\",\"authors\":\"Dimitra Tsounidi, Panagiota Petrou, Mariya Aleksandrova, Tsvetozar Tsanev, Angeliki Tserepi, Evangelos Gogolides, Andrzej Bernasik, Kamil Awsiuk, Natalia Janiszewska, Andrzej Budkowski, Ioannis Raptis\",\"doi\":\"10.3390/nano15181384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbyne-containing materials offer significant potential for biosensor applications due to their unique chemical and mechanical properties. In this study, carbyne-enriched carbon coatings deposited on SiO<sub>2</sub>/Si chips using ion-assisted pulse-plasma deposition were evaluated for the first time as substrates for optical biosensing. At first, the carbyne-enriched coatings were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Atomic Force Microscopy, and the sessile drop method to assess their composition, structure, and wettability. After that, chips with carbyne-enriched coatings were modified with biomolecules through physical absorption or covalent bonding, and the respective biomolecular interactions were monitored in real-time by White Light Reflectance Spectroscopy (WLRS). In both cases, SiO<sub>2</sub>/Si chips modified with an aminosilane were used as reference substrates. Physical adsorption was tested through immobilization of an antibody against C-reactive protein (CRP) to enable its immunochemical detection, whereas covalent bonding was tested through coupling of biotin and monitoring its reaction with streptavidin. It was found that the carbyne-enriched carbon-coated chips retained both their antibody adsorption capability and their covalent bonding ability for over 18 months, while the modified with aminosilane SiO<sub>2</sub>/Si chips lost 90% of their antibody adsorption capacity and covalent bonding ability after two months of storage. These findings highlight the strong potential of carbyne-enriched carbon-coated chips as robust biosensing substrates, with applications extending beyond WLRS.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181384\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181384","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含碳材料由于其独特的化学和机械性能,为生物传感器的应用提供了巨大的潜力。在这项研究中,首次利用离子辅助脉冲等离子体沉积技术在SiO2/Si芯片上沉积了富碳碳涂层,作为光学生物传感的衬底。首先,通过x射线光电子能谱、拉曼光谱、原子力显微镜和固滴法对富碳涂层进行表征,以评估其组成、结构和润湿性。然后,通过物理吸收或共价键对具有富碳涂层的芯片进行生物分子修饰,并通过白光反射光谱(White Light Reflectance Spectroscopy, WLRS)实时监测生物分子之间的相互作用。在这两种情况下,用氨基硅烷修饰的SiO2/Si芯片作为基准底物。物理吸附测试是通过固定c反应蛋白(CRP)抗体来进行免疫化学检测,而共价键测试是通过生物素偶联并监测其与链霉亲和素的反应。结果表明,富碳包被芯片的抗体吸附能力和共价键结合能力在18个月以上仍保持不变,而氨基硅烷修饰的SiO2/Si芯片在储存2个月后抗体吸附能力和共价键结合能力下降90%。这些发现突出了富含碳的碳包覆芯片作为强大的生物传感底物的强大潜力,其应用范围超出了WLRS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbyne-Enriched Carbon Coatings on Silicon Chips as Biosensing Surfaces with Stable-over-Time Biomolecule Binding Capacity.

Carbyne-containing materials offer significant potential for biosensor applications due to their unique chemical and mechanical properties. In this study, carbyne-enriched carbon coatings deposited on SiO2/Si chips using ion-assisted pulse-plasma deposition were evaluated for the first time as substrates for optical biosensing. At first, the carbyne-enriched coatings were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Atomic Force Microscopy, and the sessile drop method to assess their composition, structure, and wettability. After that, chips with carbyne-enriched coatings were modified with biomolecules through physical absorption or covalent bonding, and the respective biomolecular interactions were monitored in real-time by White Light Reflectance Spectroscopy (WLRS). In both cases, SiO2/Si chips modified with an aminosilane were used as reference substrates. Physical adsorption was tested through immobilization of an antibody against C-reactive protein (CRP) to enable its immunochemical detection, whereas covalent bonding was tested through coupling of biotin and monitoring its reaction with streptavidin. It was found that the carbyne-enriched carbon-coated chips retained both their antibody adsorption capability and their covalent bonding ability for over 18 months, while the modified with aminosilane SiO2/Si chips lost 90% of their antibody adsorption capacity and covalent bonding ability after two months of storage. These findings highlight the strong potential of carbyne-enriched carbon-coated chips as robust biosensing substrates, with applications extending beyond WLRS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信