{"title":"用第一性原理计算理解过渡金属掺杂单层TiS2的磁交换途径。","authors":"P J Keeney, P M Coelho, J T Haraldsen","doi":"10.3390/nano15181435","DOIUrl":null,"url":null,"abstract":"<p><p>The ideal crystal symmetry of the 1T-TiS<sub>2</sub> lattice results in a non-magnetic structure. However, recent studies have demonstrated that it may become magnetic upon substitution with transition-metal (TM) atoms. In this study, we examine the mechanisms and interactions that allow magnetic exchange through the TiS<sub>2</sub> matrix. Using density functional theory, we model the substitutional TM-doped TiS<sub>2</sub> (TM = V, Cr, or Mn) system with varying spatial distances to examine the effects on the magnetic exchange. Since pristine 1T-TiS<sub>2</sub> is weakly semiconducting, there is a possibility that the introduction of metallic atoms may induce an RKKY-like interaction. We find that the substitution of vanadium produces a standard exchange through the orbital interactions. However, the introduction of chromium and manganese may generate RKKY interactions with the conduction electrons. Overall, a more comprehensive understanding of how different dopants affect magnetic behavior and communicate through the lattice can enable the design of spintronic devices, which offer the potential for more energy-efficient technologies and a deeper understanding of low-dimensional systems.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding the Magnetic Exchange Pathways of Transition-Metal-Doped Monolayer TiS<sub>2</sub> Using First-Principles Calculations.\",\"authors\":\"P J Keeney, P M Coelho, J T Haraldsen\",\"doi\":\"10.3390/nano15181435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ideal crystal symmetry of the 1T-TiS<sub>2</sub> lattice results in a non-magnetic structure. However, recent studies have demonstrated that it may become magnetic upon substitution with transition-metal (TM) atoms. In this study, we examine the mechanisms and interactions that allow magnetic exchange through the TiS<sub>2</sub> matrix. Using density functional theory, we model the substitutional TM-doped TiS<sub>2</sub> (TM = V, Cr, or Mn) system with varying spatial distances to examine the effects on the magnetic exchange. Since pristine 1T-TiS<sub>2</sub> is weakly semiconducting, there is a possibility that the introduction of metallic atoms may induce an RKKY-like interaction. We find that the substitution of vanadium produces a standard exchange through the orbital interactions. However, the introduction of chromium and manganese may generate RKKY interactions with the conduction electrons. Overall, a more comprehensive understanding of how different dopants affect magnetic behavior and communicate through the lattice can enable the design of spintronic devices, which offer the potential for more energy-efficient technologies and a deeper understanding of low-dimensional systems.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181435\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181435","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the Magnetic Exchange Pathways of Transition-Metal-Doped Monolayer TiS2 Using First-Principles Calculations.
The ideal crystal symmetry of the 1T-TiS2 lattice results in a non-magnetic structure. However, recent studies have demonstrated that it may become magnetic upon substitution with transition-metal (TM) atoms. In this study, we examine the mechanisms and interactions that allow magnetic exchange through the TiS2 matrix. Using density functional theory, we model the substitutional TM-doped TiS2 (TM = V, Cr, or Mn) system with varying spatial distances to examine the effects on the magnetic exchange. Since pristine 1T-TiS2 is weakly semiconducting, there is a possibility that the introduction of metallic atoms may induce an RKKY-like interaction. We find that the substitution of vanadium produces a standard exchange through the orbital interactions. However, the introduction of chromium and manganese may generate RKKY interactions with the conduction electrons. Overall, a more comprehensive understanding of how different dopants affect magnetic behavior and communicate through the lattice can enable the design of spintronic devices, which offer the potential for more energy-efficient technologies and a deeper understanding of low-dimensional systems.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.