Filippo Agresti, Giuliano Angella, Humaira Arshad, Simona Barison, Davide Barreca, Paola Bassani, Simone Battiston, Carlo Alberto Biffi, Maria Teresa Buscaglia, Giovanna Canu, Francesca Cirisano, Silvia Maria Deambrosis, Angelica Fasan, Stefano Fasolin, Monica Favaro, Michele Ferrari, Stefania Fiameni, Jacopo Fiocchi, Marco Fortunato, Donatella Giuranno, Parnian Govahi, Jacopo Isopi, Francesco Montagner, Cecilia Mortalò, Enrico Miorin, Rada Novakovic, Luca Pezzato, Daniela Treska, Ausonio Tuissi, Barbara Vercelli, Francesca Villa, Francesca Visentin, Valentina Zin, Maria Losurdo
{"title":"可持续能源材料。","authors":"Filippo Agresti, Giuliano Angella, Humaira Arshad, Simona Barison, Davide Barreca, Paola Bassani, Simone Battiston, Carlo Alberto Biffi, Maria Teresa Buscaglia, Giovanna Canu, Francesca Cirisano, Silvia Maria Deambrosis, Angelica Fasan, Stefano Fasolin, Monica Favaro, Michele Ferrari, Stefania Fiameni, Jacopo Fiocchi, Marco Fortunato, Donatella Giuranno, Parnian Govahi, Jacopo Isopi, Francesco Montagner, Cecilia Mortalò, Enrico Miorin, Rada Novakovic, Luca Pezzato, Daniela Treska, Ausonio Tuissi, Barbara Vercelli, Francesca Villa, Francesca Visentin, Valentina Zin, Maria Losurdo","doi":"10.3390/nano15181388","DOIUrl":null,"url":null,"abstract":"<p><p>The sustainable production of energy without environmental footprints is a challenge of paramount importance to satisfy the ever-increasing global demand and to promote economic and social growth through a greener perspective. Such awareness has significantly stimulated worldwide efforts aimed at exploring various energy paths and sources, in compliance with the ever more stringent environmental regulations. Research advancements in these fields are directly dependent on the design, fabrication, and implementation of tailored multi-materials for efficient energy production and harvesting and storage devices. Herein, we aim at providing a survey on the ongoing research activities related to various aspects of functional materials for energy production, conversion, and storage. In particular, we present the opportunities and the main open challenges related to multifunctional materials spanning from carbon-based nanostructures for chemical energy conversion, ferroelectric ceramics for energy harvesting, and phase change materials for thermal energy storage to metallic materials for hydrogen technologies, heat exchangers for wind energy, and amphiphobic coatings for the protection of solar panels. The relevance of designing tailored materials for power generation is also presented. Finally, the importance of applying life cycle assessment to materials is emphasized through the case study of AlTiN thin films.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustainable Materials for Energy.\",\"authors\":\"Filippo Agresti, Giuliano Angella, Humaira Arshad, Simona Barison, Davide Barreca, Paola Bassani, Simone Battiston, Carlo Alberto Biffi, Maria Teresa Buscaglia, Giovanna Canu, Francesca Cirisano, Silvia Maria Deambrosis, Angelica Fasan, Stefano Fasolin, Monica Favaro, Michele Ferrari, Stefania Fiameni, Jacopo Fiocchi, Marco Fortunato, Donatella Giuranno, Parnian Govahi, Jacopo Isopi, Francesco Montagner, Cecilia Mortalò, Enrico Miorin, Rada Novakovic, Luca Pezzato, Daniela Treska, Ausonio Tuissi, Barbara Vercelli, Francesca Villa, Francesca Visentin, Valentina Zin, Maria Losurdo\",\"doi\":\"10.3390/nano15181388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sustainable production of energy without environmental footprints is a challenge of paramount importance to satisfy the ever-increasing global demand and to promote economic and social growth through a greener perspective. Such awareness has significantly stimulated worldwide efforts aimed at exploring various energy paths and sources, in compliance with the ever more stringent environmental regulations. Research advancements in these fields are directly dependent on the design, fabrication, and implementation of tailored multi-materials for efficient energy production and harvesting and storage devices. Herein, we aim at providing a survey on the ongoing research activities related to various aspects of functional materials for energy production, conversion, and storage. In particular, we present the opportunities and the main open challenges related to multifunctional materials spanning from carbon-based nanostructures for chemical energy conversion, ferroelectric ceramics for energy harvesting, and phase change materials for thermal energy storage to metallic materials for hydrogen technologies, heat exchangers for wind energy, and amphiphobic coatings for the protection of solar panels. The relevance of designing tailored materials for power generation is also presented. Finally, the importance of applying life cycle assessment to materials is emphasized through the case study of AlTiN thin films.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181388\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181388","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The sustainable production of energy without environmental footprints is a challenge of paramount importance to satisfy the ever-increasing global demand and to promote economic and social growth through a greener perspective. Such awareness has significantly stimulated worldwide efforts aimed at exploring various energy paths and sources, in compliance with the ever more stringent environmental regulations. Research advancements in these fields are directly dependent on the design, fabrication, and implementation of tailored multi-materials for efficient energy production and harvesting and storage devices. Herein, we aim at providing a survey on the ongoing research activities related to various aspects of functional materials for energy production, conversion, and storage. In particular, we present the opportunities and the main open challenges related to multifunctional materials spanning from carbon-based nanostructures for chemical energy conversion, ferroelectric ceramics for energy harvesting, and phase change materials for thermal energy storage to metallic materials for hydrogen technologies, heat exchangers for wind energy, and amphiphobic coatings for the protection of solar panels. The relevance of designing tailored materials for power generation is also presented. Finally, the importance of applying life cycle assessment to materials is emphasized through the case study of AlTiN thin films.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.