Hang Li, Yahui Li, Yang Shang, Mengmeng Yue, Duan Luo, Yanhua Xue, Guilong Gao, Jinshou Tian
{"title":"利用空频复用技术实现超快激光诱导等离子体可视化的单次亚皮秒超快显微成像。","authors":"Hang Li, Yahui Li, Yang Shang, Mengmeng Yue, Duan Luo, Yanhua Xue, Guilong Gao, Jinshou Tian","doi":"10.3390/nano15181410","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution frames in one non-repeatable event with a temporal resolution of sub-picoseconds. However, previous approaches suffer from degraded spatial resolution, which is a bottleneck in microscopic imaging. For the spatial-frequency multiplexing methods based on structured illumination, a reconstruction strategy was proposed utilizing the frames' conjugate symmetry in the Fourier domain. The spatial resolution is double that of the traditional algorithm by evaluating with synthetic data, revealing that the reconstruction resolution can reach the diffraction limitation. A two-frame microscopic system was constructed with a frame interval of 300 fs and a maximum spatial resolution of 1.4 μm. The interaction between a femtosecond laser and a fused silica glass plate was captured in a single shot and the dynamic evolution of the induced plasma was observed, verifying the application feasibility in ultrafast laser processing, providing experimental observations for interaction mechanism research and theoretical model optimization.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472403/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Shot Sub-Picosecond Ultrafast Microscopic Imaging Utilizing Spatial-Frequency Multiplexing for Ultrafast Laser-Induced Plasma Visualization.\",\"authors\":\"Hang Li, Yahui Li, Yang Shang, Mengmeng Yue, Duan Luo, Yanhua Xue, Guilong Gao, Jinshou Tian\",\"doi\":\"10.3390/nano15181410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution frames in one non-repeatable event with a temporal resolution of sub-picoseconds. However, previous approaches suffer from degraded spatial resolution, which is a bottleneck in microscopic imaging. For the spatial-frequency multiplexing methods based on structured illumination, a reconstruction strategy was proposed utilizing the frames' conjugate symmetry in the Fourier domain. The spatial resolution is double that of the traditional algorithm by evaluating with synthetic data, revealing that the reconstruction resolution can reach the diffraction limitation. A two-frame microscopic system was constructed with a frame interval of 300 fs and a maximum spatial resolution of 1.4 μm. The interaction between a femtosecond laser and a fused silica glass plate was captured in a single shot and the dynamic evolution of the induced plasma was observed, verifying the application feasibility in ultrafast laser processing, providing experimental observations for interaction mechanism research and theoretical model optimization.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181410\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181410","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution frames in one non-repeatable event with a temporal resolution of sub-picoseconds. However, previous approaches suffer from degraded spatial resolution, which is a bottleneck in microscopic imaging. For the spatial-frequency multiplexing methods based on structured illumination, a reconstruction strategy was proposed utilizing the frames' conjugate symmetry in the Fourier domain. The spatial resolution is double that of the traditional algorithm by evaluating with synthetic data, revealing that the reconstruction resolution can reach the diffraction limitation. A two-frame microscopic system was constructed with a frame interval of 300 fs and a maximum spatial resolution of 1.4 μm. The interaction between a femtosecond laser and a fused silica glass plate was captured in a single shot and the dynamic evolution of the induced plasma was observed, verifying the application feasibility in ultrafast laser processing, providing experimental observations for interaction mechanism research and theoretical model optimization.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.