硬石膏改性过硫酸盐水泥纳米级孔隙细化和水化控制:煅烧诱导晶体相变的作用。

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-18 DOI:10.3390/nano15181432
Zeyuan Hu, Cheng Zhang, Yi Wan, Rui Ma, Chunping Gu, Xu Yang, Jianjun Dong, Dong Cui
{"title":"硬石膏改性过硫酸盐水泥纳米级孔隙细化和水化控制:煅烧诱导晶体相变的作用。","authors":"Zeyuan Hu, Cheng Zhang, Yi Wan, Rui Ma, Chunping Gu, Xu Yang, Jianjun Dong, Dong Cui","doi":"10.3390/nano15181432","DOIUrl":null,"url":null,"abstract":"<p><p>Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree and strength of SSC. The experiment used III CaSO4 (high solubility) and II-U CaSO4 (low solubility) as sulfate activators, evaluating the mechanical properties of anhydrite produced at different calcination temperatures through an analysis of pore structure, phase composition, reaction degree of mineral powder, and hydration heat. The results indicate that II-U anhydrite enhances slag hydration, reduces pore size, and significantly improves the compressive strength of SSC. This improvement is attributed to its impact on slag hydration: it reduces gypsum consumption rate, delays ettringite formation, promotes gel product formation, decreases the volume ratio of ettringite to calcium silicate hydrate (C-S-H) gel, fills pores, and decreases porosity. This study reveals the influence of calcined dihydrate gypsum phase changes on the macroscopic properties of SSC and the microstructure of hydration, elucidating the hydration mechanism of anhydrite-based SSC. This work provides a nanomaterial-based strategy for SSC design via crystal phase engineering.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Pore Refinement and Hydration Control in Anhydrite-Modified Supersulfated Cement: Role of Calcination-Induced Crystal Phase Transition.\",\"authors\":\"Zeyuan Hu, Cheng Zhang, Yi Wan, Rui Ma, Chunping Gu, Xu Yang, Jianjun Dong, Dong Cui\",\"doi\":\"10.3390/nano15181432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree and strength of SSC. The experiment used III CaSO4 (high solubility) and II-U CaSO4 (low solubility) as sulfate activators, evaluating the mechanical properties of anhydrite produced at different calcination temperatures through an analysis of pore structure, phase composition, reaction degree of mineral powder, and hydration heat. The results indicate that II-U anhydrite enhances slag hydration, reduces pore size, and significantly improves the compressive strength of SSC. This improvement is attributed to its impact on slag hydration: it reduces gypsum consumption rate, delays ettringite formation, promotes gel product formation, decreases the volume ratio of ettringite to calcium silicate hydrate (C-S-H) gel, fills pores, and decreases porosity. This study reveals the influence of calcined dihydrate gypsum phase changes on the macroscopic properties of SSC and the microstructure of hydration, elucidating the hydration mechanism of anhydrite-based SSC. This work provides a nanomaterial-based strategy for SSC design via crystal phase engineering.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181432\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181432","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构优化是提高低碳水泥性能的关键。超硫酸盐水泥(SSC)是一种主要由高炉矿渣和硫酸钙组成的环保低碳水泥。本研究考察了两种硬石膏对SSC水化程度和强度的影响。本实验以高溶解度的III型CaSO4和低溶解度的II-U型CaSO4作为硫酸盐活化剂,通过分析矿粉的孔隙结构、相组成、反应程度和水化热来评价不同煅烧温度下生产的硬石膏的力学性能。结果表明:II-U硬石膏增强了矿渣水化作用,减小了矿渣的孔径,显著提高了矿渣的抗压强度;这种改善是由于它对矿渣水化的影响:它降低了石膏的消耗率,延缓了钙矾石的形成,促进了凝胶产物的形成,降低了钙矾石与水化硅酸钙(C-S-H)凝胶的体积比,填充了孔隙,降低了孔隙度。本研究揭示了煅烧二水石膏相变对硬石膏宏观性能和水化微观结构的影响,阐明了硬石膏基硬石膏的水化机理。本研究提供了一种基于纳米材料的基于晶相工程的SSC设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoscale Pore Refinement and Hydration Control in Anhydrite-Modified Supersulfated Cement: Role of Calcination-Induced Crystal Phase Transition.

Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree and strength of SSC. The experiment used III CaSO4 (high solubility) and II-U CaSO4 (low solubility) as sulfate activators, evaluating the mechanical properties of anhydrite produced at different calcination temperatures through an analysis of pore structure, phase composition, reaction degree of mineral powder, and hydration heat. The results indicate that II-U anhydrite enhances slag hydration, reduces pore size, and significantly improves the compressive strength of SSC. This improvement is attributed to its impact on slag hydration: it reduces gypsum consumption rate, delays ettringite formation, promotes gel product formation, decreases the volume ratio of ettringite to calcium silicate hydrate (C-S-H) gel, fills pores, and decreases porosity. This study reveals the influence of calcined dihydrate gypsum phase changes on the macroscopic properties of SSC and the microstructure of hydration, elucidating the hydration mechanism of anhydrite-based SSC. This work provides a nanomaterial-based strategy for SSC design via crystal phase engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信