室温紫外光照射下基于n-ZnO /p-NiO纳米异质结NO2气体传感器

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-09-16 DOI:10.3390/nano15181426
Yoon-Seo Park, Sohyeon Kim, Junyoung Lee, Jae-Hoon Jeong, Sung-Yun Byun, Jiyoon Shin, Il-Kyu Park, Kyoung-Kook Kim
{"title":"室温紫外光照射下基于n-ZnO /p-NiO纳米异质结NO2气体传感器","authors":"Yoon-Seo Park, Sohyeon Kim, Junyoung Lee, Jae-Hoon Jeong, Sung-Yun Byun, Jiyoon Shin, Il-Kyu Park, Kyoung-Kook Kim","doi":"10.3390/nano15181426","DOIUrl":null,"url":null,"abstract":"<p><p>Room-temperature (RT) gas sensors for nitrogen dioxide (NO<sub>2</sub>) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a <i>p</i>-<i>n</i> nano-heterojunction (NHJ) gas sensor by integrating <i>p</i>-type nickel oxide (NiO) nanoparticles onto <i>n</i>-type zinc oxide (ZnO) nanorods. This architecture leverages UV-driven carrier generation and interfacial electric fields at the NHJ to suppress recombination, enabling unprecedented RT performance. By optimizing thermal annealing conditions, we achieved a well-defined heterojunction with uniform NiO distribution on the top of the ZnO nanorods, validated through electron microscopy and X-ray photoelectron spectroscopy. The resulting sensor exhibits a 5.4-fold higher normalized response to 50 ppm NO<sub>2</sub> under 365 nm UV illumination compared to pristine ZnO, alongside rapid recovery and stable cyclability. The synergistic combination of UV-assisted carrier generation and heterojunction-driven interfacial modulation offers a promising direction for next-generation RT gas sensors aimed at environmental monitoring.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nano-Heterojunction NO<sub>2</sub> Gas Sensor Based on <i>n</i>-ZnO Nanorods/<i>p</i>-NiO Nanoparticles Under UV Illumination at Room Temperature.\",\"authors\":\"Yoon-Seo Park, Sohyeon Kim, Junyoung Lee, Jae-Hoon Jeong, Sung-Yun Byun, Jiyoon Shin, Il-Kyu Park, Kyoung-Kook Kim\",\"doi\":\"10.3390/nano15181426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Room-temperature (RT) gas sensors for nitrogen dioxide (NO<sub>2</sub>) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a <i>p</i>-<i>n</i> nano-heterojunction (NHJ) gas sensor by integrating <i>p</i>-type nickel oxide (NiO) nanoparticles onto <i>n</i>-type zinc oxide (ZnO) nanorods. This architecture leverages UV-driven carrier generation and interfacial electric fields at the NHJ to suppress recombination, enabling unprecedented RT performance. By optimizing thermal annealing conditions, we achieved a well-defined heterojunction with uniform NiO distribution on the top of the ZnO nanorods, validated through electron microscopy and X-ray photoelectron spectroscopy. The resulting sensor exhibits a 5.4-fold higher normalized response to 50 ppm NO<sub>2</sub> under 365 nm UV illumination compared to pristine ZnO, alongside rapid recovery and stable cyclability. The synergistic combination of UV-assisted carrier generation and heterojunction-driven interfacial modulation offers a promising direction for next-generation RT gas sensors aimed at environmental monitoring.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181426\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181426","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于二氧化氮(NO2)检测的室温(RT)气体传感器面临着持续的挑战,包括依赖于高工作温度和紫外线激活下低效的载流子利用。为了解决这些限制,我们通过将p型氧化镍(NiO)纳米颗粒集成到n型氧化锌(ZnO)纳米棒上,设计了一种p-n纳米异质结(NHJ)气体传感器。该架构利用紫外线驱动的载流子生成和NHJ的界面电场来抑制重组,从而实现前所未有的RT性能。通过优化热退火条件,我们在ZnO纳米棒的顶部获得了均匀分布的NiO异质结,并通过电子显微镜和x射线光电子能谱进行了验证。与原始ZnO相比,该传感器在365 nm紫外光照射下对50 ppm NO2的归一化响应高5.4倍,并且具有快速恢复和稳定的可循环性。uv辅助的载流子生成和异质结驱动的界面调制的协同结合为下一代环境监测RT气体传感器提供了一个有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano-Heterojunction NO2 Gas Sensor Based on n-ZnO Nanorods/p-NiO Nanoparticles Under UV Illumination at Room Temperature.

Room-temperature (RT) gas sensors for nitrogen dioxide (NO2) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a p-n nano-heterojunction (NHJ) gas sensor by integrating p-type nickel oxide (NiO) nanoparticles onto n-type zinc oxide (ZnO) nanorods. This architecture leverages UV-driven carrier generation and interfacial electric fields at the NHJ to suppress recombination, enabling unprecedented RT performance. By optimizing thermal annealing conditions, we achieved a well-defined heterojunction with uniform NiO distribution on the top of the ZnO nanorods, validated through electron microscopy and X-ray photoelectron spectroscopy. The resulting sensor exhibits a 5.4-fold higher normalized response to 50 ppm NO2 under 365 nm UV illumination compared to pristine ZnO, alongside rapid recovery and stable cyclability. The synergistic combination of UV-assisted carrier generation and heterojunction-driven interfacial modulation offers a promising direction for next-generation RT gas sensors aimed at environmental monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信