Yafei Li, Jiani Li, Zhuangzhuang Xu, Xiufei Li, Songda Gu, Ze Li, Meng Wang
{"title":"金属镜面结构上扁圆形纳米椭球间隙中等离子体诱导磁反极点模式增强磁Purcell。","authors":"Yafei Li, Jiani Li, Zhuangzhuang Xu, Xiufei Li, Songda Gu, Ze Li, Meng Wang","doi":"10.3390/nano15181451","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic anapole states associated with the destructive interference between magnetic dipole and magnetic toroidal moments result in suppressed scattering accompanied by strongly enhanced near fields. Here, we demonstrate the existence of such modes in the gap of a gold oblate nano-ellipsoid on gold mirror (ONEOM) structures and observe a pronounced Purcell factor enhancement for magnetic dipole radiation upon introducing magnetic dipoles into the gap. We systematically investigate the dependence of the magnetic radiation Purcell factor on gap size and structural parameters. Notably, a 230-fold Purcell factor enhancement is achieved for the ONEOM configuration. This result highlights the potential of ONEOM structures in applications requiring efficient magnetic dipole emission, including nonlinear frequency conversion, plasmonic sensing, and single-photon sources.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472662/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic Purcell Enhancement by Plasmon-Induced Magnetic Anapole Mode in the Gap of Oblate Nano-Ellipsoid on Metal Mirror Structure.\",\"authors\":\"Yafei Li, Jiani Li, Zhuangzhuang Xu, Xiufei Li, Songda Gu, Ze Li, Meng Wang\",\"doi\":\"10.3390/nano15181451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic anapole states associated with the destructive interference between magnetic dipole and magnetic toroidal moments result in suppressed scattering accompanied by strongly enhanced near fields. Here, we demonstrate the existence of such modes in the gap of a gold oblate nano-ellipsoid on gold mirror (ONEOM) structures and observe a pronounced Purcell factor enhancement for magnetic dipole radiation upon introducing magnetic dipoles into the gap. We systematically investigate the dependence of the magnetic radiation Purcell factor on gap size and structural parameters. Notably, a 230-fold Purcell factor enhancement is achieved for the ONEOM configuration. This result highlights the potential of ONEOM structures in applications requiring efficient magnetic dipole emission, including nonlinear frequency conversion, plasmonic sensing, and single-photon sources.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472662/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181451\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181451","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic Purcell Enhancement by Plasmon-Induced Magnetic Anapole Mode in the Gap of Oblate Nano-Ellipsoid on Metal Mirror Structure.
Magnetic anapole states associated with the destructive interference between magnetic dipole and magnetic toroidal moments result in suppressed scattering accompanied by strongly enhanced near fields. Here, we demonstrate the existence of such modes in the gap of a gold oblate nano-ellipsoid on gold mirror (ONEOM) structures and observe a pronounced Purcell factor enhancement for magnetic dipole radiation upon introducing magnetic dipoles into the gap. We systematically investigate the dependence of the magnetic radiation Purcell factor on gap size and structural parameters. Notably, a 230-fold Purcell factor enhancement is achieved for the ONEOM configuration. This result highlights the potential of ONEOM structures in applications requiring efficient magnetic dipole emission, including nonlinear frequency conversion, plasmonic sensing, and single-photon sources.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.