Ruoyang Li, Jie Zhao, Yifei Qiao, Xiaoyan Liu, Shiliang Mei
{"title":"片上集成多功能胶体量子点发光器件。","authors":"Ruoyang Li, Jie Zhao, Yifei Qiao, Xiaoyan Liu, Shiliang Mei","doi":"10.3390/nano15181422","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal quantum dots (CQDs) have attracted significant attention in optoelectronics due to their size-tunable bandgap, high photoluminescence quantum yield, and solution processability, which enable integration into compact and energy-efficient systems. This review consolidates recent progress in multifunctional CQD-based light-emitting devices and on-chip integration strategies. This review systematically examines fundamental CQD properties (quantum confinement, carrier dynamics, and core-shell heterostructures), key synthesis methods including hot injection, ligand-assisted reprecipitation, and microfluidic flow synthesis, and device innovations such as light-emitting field-effect transistors, light-emitting solar cells, and light-emitting memristors, alongside on-chip components including ongoing electrically pumped lasers and photodetectors. This review concludes that synergies in material engineering, device design, and system innovation are pivotal for next-generation optoelectronics, though challenges such as environmental instability, Auger recombination, and CMOS compatibility require future breakthroughs in atomic-layer deposition, 3D heterostructures, and data-driven optimization.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472826/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration.\",\"authors\":\"Ruoyang Li, Jie Zhao, Yifei Qiao, Xiaoyan Liu, Shiliang Mei\",\"doi\":\"10.3390/nano15181422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colloidal quantum dots (CQDs) have attracted significant attention in optoelectronics due to their size-tunable bandgap, high photoluminescence quantum yield, and solution processability, which enable integration into compact and energy-efficient systems. This review consolidates recent progress in multifunctional CQD-based light-emitting devices and on-chip integration strategies. This review systematically examines fundamental CQD properties (quantum confinement, carrier dynamics, and core-shell heterostructures), key synthesis methods including hot injection, ligand-assisted reprecipitation, and microfluidic flow synthesis, and device innovations such as light-emitting field-effect transistors, light-emitting solar cells, and light-emitting memristors, alongside on-chip components including ongoing electrically pumped lasers and photodetectors. This review concludes that synergies in material engineering, device design, and system innovation are pivotal for next-generation optoelectronics, though challenges such as environmental instability, Auger recombination, and CMOS compatibility require future breakthroughs in atomic-layer deposition, 3D heterostructures, and data-driven optimization.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 18\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472826/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15181422\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15181422","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration.
Colloidal quantum dots (CQDs) have attracted significant attention in optoelectronics due to their size-tunable bandgap, high photoluminescence quantum yield, and solution processability, which enable integration into compact and energy-efficient systems. This review consolidates recent progress in multifunctional CQD-based light-emitting devices and on-chip integration strategies. This review systematically examines fundamental CQD properties (quantum confinement, carrier dynamics, and core-shell heterostructures), key synthesis methods including hot injection, ligand-assisted reprecipitation, and microfluidic flow synthesis, and device innovations such as light-emitting field-effect transistors, light-emitting solar cells, and light-emitting memristors, alongside on-chip components including ongoing electrically pumped lasers and photodetectors. This review concludes that synergies in material engineering, device design, and system innovation are pivotal for next-generation optoelectronics, though challenges such as environmental instability, Auger recombination, and CMOS compatibility require future breakthroughs in atomic-layer deposition, 3D heterostructures, and data-driven optimization.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.