{"title":"基于微藻的生物3D打印:最新进展、应用和前景。","authors":"Jinhui Tang, Jiahui Sun, Jinyu Cui, Xiangyi Yuan, Guodong Luan, Xuefeng Lu","doi":"10.3390/md23090342","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional bioprinting integrating living cells and bioactive materials enables the fabrication of scaffold structures supporting diverse cellular growth and metabolism. Microalgae are among the most promising microbial platforms for the construction of photosynthetic cell factories, while the current industrial-scale cultivation of microalgae remains predominantly dependent on traditional liquid submerged systems, imposing limitations on commercial viability due to both process and economic constraints. Encapsulation of microalgae within bioactive matrices combined with 3D bioprinting to fabricate customized structures has been explored to address the limitations of submerged cultivation, which are expected to expand microalgal applications and establish new research directions in microalgal biotechnology. This review analyzes both matrices and methods of 3D bioprinting, summarizing the advancement of microalgae-based 3D bioprinting into six main domains including living building materials, biophotovoltaics, photosynthetic biosynthesis, bioremediation, tissue engineering, and food engineering. Lastly, synthetic biology-informed perspectives are provided on future developments of 3D bioprinting technologies and their potential in microalgal research.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471347/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microalgae-Based 3D Bioprinting: Recent Advances, Applications and Perspectives.\",\"authors\":\"Jinhui Tang, Jiahui Sun, Jinyu Cui, Xiangyi Yuan, Guodong Luan, Xuefeng Lu\",\"doi\":\"10.3390/md23090342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional bioprinting integrating living cells and bioactive materials enables the fabrication of scaffold structures supporting diverse cellular growth and metabolism. Microalgae are among the most promising microbial platforms for the construction of photosynthetic cell factories, while the current industrial-scale cultivation of microalgae remains predominantly dependent on traditional liquid submerged systems, imposing limitations on commercial viability due to both process and economic constraints. Encapsulation of microalgae within bioactive matrices combined with 3D bioprinting to fabricate customized structures has been explored to address the limitations of submerged cultivation, which are expected to expand microalgal applications and establish new research directions in microalgal biotechnology. This review analyzes both matrices and methods of 3D bioprinting, summarizing the advancement of microalgae-based 3D bioprinting into six main domains including living building materials, biophotovoltaics, photosynthetic biosynthesis, bioremediation, tissue engineering, and food engineering. Lastly, synthetic biology-informed perspectives are provided on future developments of 3D bioprinting technologies and their potential in microalgal research.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 9\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471347/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23090342\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23090342","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Microalgae-Based 3D Bioprinting: Recent Advances, Applications and Perspectives.
Three-dimensional bioprinting integrating living cells and bioactive materials enables the fabrication of scaffold structures supporting diverse cellular growth and metabolism. Microalgae are among the most promising microbial platforms for the construction of photosynthetic cell factories, while the current industrial-scale cultivation of microalgae remains predominantly dependent on traditional liquid submerged systems, imposing limitations on commercial viability due to both process and economic constraints. Encapsulation of microalgae within bioactive matrices combined with 3D bioprinting to fabricate customized structures has been explored to address the limitations of submerged cultivation, which are expected to expand microalgal applications and establish new research directions in microalgal biotechnology. This review analyzes both matrices and methods of 3D bioprinting, summarizing the advancement of microalgae-based 3D bioprinting into six main domains including living building materials, biophotovoltaics, photosynthetic biosynthesis, bioremediation, tissue engineering, and food engineering. Lastly, synthetic biology-informed perspectives are provided on future developments of 3D bioprinting technologies and their potential in microalgal research.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.