GPI锚定蛋白的生物合成、缺陷及处理。

IF 2.5 3区 生物学 Q2 GENETICS & HEREDITY
Yoshiko Murakami
{"title":"GPI锚定蛋白的生物合成、缺陷及处理。","authors":"Yoshiko Murakami","doi":"10.1038/s10038-025-01379-1","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylphosphatidylinositol (GPI) anchoring is a widely conserved post-translational modification in eukaryotes, in which various proteins-such as receptors, cell adhesion molecules, and complement regulatory proteins-are modified with a GPI moiety and tethered to the cell membrane. GPI anchors are synthesized in the endoplasmic reticulum (ER), where they are attached to newly translated proteins. These GPI-anchored proteins (GPI-APs) then undergo structural remodeling and are transported to the cell surface. To date, approximately 30 gene products have been identified as essential for the GPI biosynthetic and remodeling pathways. In addition to paroxysmal nocturnal hemoglobinuria (PNH), a well-characterized acquired hematologic disorder caused by somatic mutations in GPI biosynthesis genes, an increasing number of inherited GPI deficiencies (IGDs) have recently been reported. These congenital disorders are typically caused by hypomorphic mutations in GPI biosynthetic genes and present with neurological abnormalities. In this review, we provide an overview of the biosynthetic pathway of GPI anchors in mammalian cells and the genetic disorders resulting from its dysfunction. We also discuss emerging therapeutic approaches currently under investigation, including gene therapy, which hold promise for improving clinical outcomes in patients with IGD.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of GPI anchored proteins, its deficiencies and treatment.\",\"authors\":\"Yoshiko Murakami\",\"doi\":\"10.1038/s10038-025-01379-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosylphosphatidylinositol (GPI) anchoring is a widely conserved post-translational modification in eukaryotes, in which various proteins-such as receptors, cell adhesion molecules, and complement regulatory proteins-are modified with a GPI moiety and tethered to the cell membrane. GPI anchors are synthesized in the endoplasmic reticulum (ER), where they are attached to newly translated proteins. These GPI-anchored proteins (GPI-APs) then undergo structural remodeling and are transported to the cell surface. To date, approximately 30 gene products have been identified as essential for the GPI biosynthetic and remodeling pathways. In addition to paroxysmal nocturnal hemoglobinuria (PNH), a well-characterized acquired hematologic disorder caused by somatic mutations in GPI biosynthesis genes, an increasing number of inherited GPI deficiencies (IGDs) have recently been reported. These congenital disorders are typically caused by hypomorphic mutations in GPI biosynthetic genes and present with neurological abnormalities. In this review, we provide an overview of the biosynthetic pathway of GPI anchors in mammalian cells and the genetic disorders resulting from its dysfunction. We also discuss emerging therapeutic approaches currently under investigation, including gene therapy, which hold promise for improving clinical outcomes in patients with IGD.</p>\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s10038-025-01379-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01379-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

糖基磷脂酰肌醇(GPI)锚定是真核生物中广泛保守的翻译后修饰,其中各种蛋白质(如受体、细胞粘附分子和补体调节蛋白)被GPI片段修饰并拴在细胞膜上。GPI锚点是在内质网(ER)中合成的,在内质网中它们附着在新翻译的蛋白质上。这些gpi锚定蛋白(GPI-APs)随后经历结构重塑并被运送到细胞表面。迄今为止,大约有30个基因产物被确定为GPI生物合成和重塑途径所必需的。阵发性夜间血红蛋白尿(PNH)是由GPI生物合成基因的体细胞突变引起的一种典型的获得性血液学疾病,除了PNH外,最近也有越来越多的遗传性GPI缺陷(IGDs)的报道。这些先天性疾病通常是由GPI生物合成基因的畸形突变引起的,并伴有神经系统异常。在这篇综述中,我们概述了GPI锚点在哺乳动物细胞中的生物合成途径以及由其功能障碍引起的遗传疾病。我们还讨论了目前正在研究的新兴治疗方法,包括基因治疗,它有望改善IGD患者的临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biosynthesis of GPI anchored proteins, its deficiencies and treatment.

Glycosylphosphatidylinositol (GPI) anchoring is a widely conserved post-translational modification in eukaryotes, in which various proteins-such as receptors, cell adhesion molecules, and complement regulatory proteins-are modified with a GPI moiety and tethered to the cell membrane. GPI anchors are synthesized in the endoplasmic reticulum (ER), where they are attached to newly translated proteins. These GPI-anchored proteins (GPI-APs) then undergo structural remodeling and are transported to the cell surface. To date, approximately 30 gene products have been identified as essential for the GPI biosynthetic and remodeling pathways. In addition to paroxysmal nocturnal hemoglobinuria (PNH), a well-characterized acquired hematologic disorder caused by somatic mutations in GPI biosynthesis genes, an increasing number of inherited GPI deficiencies (IGDs) have recently been reported. These congenital disorders are typically caused by hypomorphic mutations in GPI biosynthetic genes and present with neurological abnormalities. In this review, we provide an overview of the biosynthetic pathway of GPI anchors in mammalian cells and the genetic disorders resulting from its dysfunction. We also discuss emerging therapeutic approaches currently under investigation, including gene therapy, which hold promise for improving clinical outcomes in patients with IGD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信