{"title":"相分离调控真菌生长、性发育、适应性和合成生物学应用。","authors":"Xinxin Tong, Daixi Zhang, Zhenhong Zhu","doi":"10.3390/jof11090680","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-liquid phase separation (LLPS) is a fundamental biophysical process in which proteins and nucleic acids dynamically demix from the cellular milieu to form membraneless organelles (MLO) with liquid-like properties. Environmental cues, such as light, temperature fluctuations, and pathogen interactions, induce LLPS of fungal proteins with intrinsically disordered regions (IDRs) or multimerization domains, thereby regulating fungal hyphal growth, sexual reproduction, pathogenesis, and adaptation. Recently, LLPS has emerged as a powerful tool for biomolecular research, innovative biotechnological application, biosynthesis and metabolic engineering. This review focuses on the current advances in environmental cue-triggered fungal condensates assembled by LLPS, with a focus on their roles in regulating the fungal physical biology and cellular processes including transcription, RNA modification, translation, posttranslational modification process (PTM), transport, and stress response. It further discusses the strategies of engineering synthetic biomolecular condensates in microbial cell factories to enhance production and metabolic efficiency.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phase Separation-Regulated Fungal Growth, Sexual Development, Adaptation and Synthetic Biology Applications.\",\"authors\":\"Xinxin Tong, Daixi Zhang, Zhenhong Zhu\",\"doi\":\"10.3390/jof11090680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid-liquid phase separation (LLPS) is a fundamental biophysical process in which proteins and nucleic acids dynamically demix from the cellular milieu to form membraneless organelles (MLO) with liquid-like properties. Environmental cues, such as light, temperature fluctuations, and pathogen interactions, induce LLPS of fungal proteins with intrinsically disordered regions (IDRs) or multimerization domains, thereby regulating fungal hyphal growth, sexual reproduction, pathogenesis, and adaptation. Recently, LLPS has emerged as a powerful tool for biomolecular research, innovative biotechnological application, biosynthesis and metabolic engineering. This review focuses on the current advances in environmental cue-triggered fungal condensates assembled by LLPS, with a focus on their roles in regulating the fungal physical biology and cellular processes including transcription, RNA modification, translation, posttranslational modification process (PTM), transport, and stress response. It further discusses the strategies of engineering synthetic biomolecular condensates in microbial cell factories to enhance production and metabolic efficiency.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof11090680\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11090680","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Phase Separation-Regulated Fungal Growth, Sexual Development, Adaptation and Synthetic Biology Applications.
Liquid-liquid phase separation (LLPS) is a fundamental biophysical process in which proteins and nucleic acids dynamically demix from the cellular milieu to form membraneless organelles (MLO) with liquid-like properties. Environmental cues, such as light, temperature fluctuations, and pathogen interactions, induce LLPS of fungal proteins with intrinsically disordered regions (IDRs) or multimerization domains, thereby regulating fungal hyphal growth, sexual reproduction, pathogenesis, and adaptation. Recently, LLPS has emerged as a powerful tool for biomolecular research, innovative biotechnological application, biosynthesis and metabolic engineering. This review focuses on the current advances in environmental cue-triggered fungal condensates assembled by LLPS, with a focus on their roles in regulating the fungal physical biology and cellular processes including transcription, RNA modification, translation, posttranslational modification process (PTM), transport, and stress response. It further discusses the strategies of engineering synthetic biomolecular condensates in microbial cell factories to enhance production and metabolic efficiency.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.