基于机器学习的餐后血糖反应动态预测及个性化饮食干预。

IF 3.8 3区 医学 Q2 NUTRITION & DIETETICS
Shihan Wang, Shuoning Song, Junxiang Gao, Weiming Wu, Yong Fu, Tao Yuan, Weigang Zhao
{"title":"基于机器学习的餐后血糖反应动态预测及个性化饮食干预。","authors":"Shihan Wang, Shuoning Song, Junxiang Gao, Weiming Wu, Yong Fu, Tao Yuan, Weigang Zhao","doi":"10.1016/j.tjnut.2025.09.023","DOIUrl":null,"url":null,"abstract":"<p><p>Effective interventions to manage postprandial glycemia are critical, as postprandial glycemic response (PPGR) is strongly linked to cardiovascular and metabolic disease. Considering the interindividual variability in PPGR, the widespread application of dietary interventions has led to an increasing recognition that a universal, one-size-fits-all approach to dietary intervention is far from ideal. This highlights the need for personalized nutrition plans. In this context, we explored the potential benefits of leveraging machine learning (ML) to predict PPGR and guide personalized dietary interventions. We also critically examined the limitations of current approaches and outlined promising future directions for advancing this field.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Prediction of Postprandial Glycemic Response and Personalized Dietary Interventions Based on Machine Learning.\",\"authors\":\"Shihan Wang, Shuoning Song, Junxiang Gao, Weiming Wu, Yong Fu, Tao Yuan, Weigang Zhao\",\"doi\":\"10.1016/j.tjnut.2025.09.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective interventions to manage postprandial glycemia are critical, as postprandial glycemic response (PPGR) is strongly linked to cardiovascular and metabolic disease. Considering the interindividual variability in PPGR, the widespread application of dietary interventions has led to an increasing recognition that a universal, one-size-fits-all approach to dietary intervention is far from ideal. This highlights the need for personalized nutrition plans. In this context, we explored the potential benefits of leveraging machine learning (ML) to predict PPGR and guide personalized dietary interventions. We also critically examined the limitations of current approaches and outlined promising future directions for advancing this field.</p>\",\"PeriodicalId\":16620,\"journal\":{\"name\":\"Journal of Nutrition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tjnut.2025.09.023\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2025.09.023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

有效干预餐后血糖至关重要,因为餐后血糖反应(PPGR)与心血管和代谢疾病密切相关。考虑到PPGR的个体间差异,饮食干预的广泛应用使人们越来越认识到,一种通用的、一刀切的饮食干预方法远非理想。这凸显了个性化营养计划的必要性。在此背景下,我们探索了利用机器学习(ML)来预测PPGR和指导个性化饮食干预的潜在好处。我们还严格审查了当前方法的局限性,并概述了推进该领域的有希望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Prediction of Postprandial Glycemic Response and Personalized Dietary Interventions Based on Machine Learning.

Effective interventions to manage postprandial glycemia are critical, as postprandial glycemic response (PPGR) is strongly linked to cardiovascular and metabolic disease. Considering the interindividual variability in PPGR, the widespread application of dietary interventions has led to an increasing recognition that a universal, one-size-fits-all approach to dietary intervention is far from ideal. This highlights the need for personalized nutrition plans. In this context, we explored the potential benefits of leveraging machine learning (ML) to predict PPGR and guide personalized dietary interventions. We also critically examined the limitations of current approaches and outlined promising future directions for advancing this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nutrition
Journal of Nutrition 医学-营养学
CiteScore
7.60
自引率
4.80%
发文量
260
审稿时长
39 days
期刊介绍: The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信