正畸种植体的电泳涂层:模拟种植试验中表面特性、粘附性和抗菌活性的评估。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Maria Biegun-Żurowska, Karolina Klesiewicz, Katarzyna Matysiak, Marcin Gajek, Alicja Rapacz-Kmita, Magdalena Ziąbka
{"title":"正畸种植体的电泳涂层:模拟种植试验中表面特性、粘附性和抗菌活性的评估。","authors":"Maria Biegun-Żurowska, Karolina Klesiewicz, Katarzyna Matysiak, Marcin Gajek, Alicja Rapacz-Kmita, Magdalena Ziąbka","doi":"10.3390/jfb16090343","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the properties of electrophoretically deposited (EPD) coatings on orthodontic implants made from Ti-6Al-4V alloy were evaluated during simulated implantation trials on animal bones. Three types of chitosan-based coatings were prepared using EPD: titanium nitride microparticles (TiNPs), titanium nitride nanoparticles (TiNNPs), and boron nitride particles (BNPs). Each of these coatings was also modified by adding a polylactic acid (PLA) layer using a dip-coating technique to compare their properties with and without this additional layer. The coatings were analysed using optical microscopy, confocal microscopy, and scanning electron microscopy (SEM) with elemental analysis. Surface roughness measurements of the coated implants were also conducted to highlight differences that could significantly influence the type and strength of the bone-implant interface, directly affecting the stability of the implant as an anchorage unit. Eventually, to evaluate the antibacterial properties of the EPD coatings, their antibacterial activity against both Gram-positive and Gram-negative bacteria strains was tested. Scanning electron observations confirmed the homogenous distribution of micro- and nanoparticles in all coatings. The highest surface roughness values were observed in layers containing titanium nitride nanoparticles (TiNNPs) and chitosan. The presence of an additional dip-coating PLA layer improved the adhesion, and its effect on the surface roughness depended on the particle size. While the antibacterial properties of the coatings show promising results, achieving optimal adhesion of the coatings to implants remains a challenge that requires further development.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470570/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrophoretic Coatings for Orthodontic Implants: Evaluation of Surface Properties, Adhesion, and Antibacterial Activity in Simulated Implantation Trials.\",\"authors\":\"Maria Biegun-Żurowska, Karolina Klesiewicz, Katarzyna Matysiak, Marcin Gajek, Alicja Rapacz-Kmita, Magdalena Ziąbka\",\"doi\":\"10.3390/jfb16090343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the properties of electrophoretically deposited (EPD) coatings on orthodontic implants made from Ti-6Al-4V alloy were evaluated during simulated implantation trials on animal bones. Three types of chitosan-based coatings were prepared using EPD: titanium nitride microparticles (TiNPs), titanium nitride nanoparticles (TiNNPs), and boron nitride particles (BNPs). Each of these coatings was also modified by adding a polylactic acid (PLA) layer using a dip-coating technique to compare their properties with and without this additional layer. The coatings were analysed using optical microscopy, confocal microscopy, and scanning electron microscopy (SEM) with elemental analysis. Surface roughness measurements of the coated implants were also conducted to highlight differences that could significantly influence the type and strength of the bone-implant interface, directly affecting the stability of the implant as an anchorage unit. Eventually, to evaluate the antibacterial properties of the EPD coatings, their antibacterial activity against both Gram-positive and Gram-negative bacteria strains was tested. Scanning electron observations confirmed the homogenous distribution of micro- and nanoparticles in all coatings. The highest surface roughness values were observed in layers containing titanium nitride nanoparticles (TiNNPs) and chitosan. The presence of an additional dip-coating PLA layer improved the adhesion, and its effect on the surface roughness depended on the particle size. While the antibacterial properties of the coatings show promising results, achieving optimal adhesion of the coatings to implants remains a challenge that requires further development.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090343\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090343","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过动物骨模拟种植试验,对钛- 6al - 4v合金正畸种植体电泳沉积(EPD)涂层的性能进行了评价。采用EPD法制备了三种壳聚糖基涂层:氮化钛微颗粒(TiNPs)、氮化钛纳米颗粒(TiNNPs)和氮化硼颗粒(BNPs)。每种涂层还通过使用浸涂技术添加聚乳酸(PLA)层来进行改性,以比较有和没有这层附加层的性能。采用光学显微镜、共聚焦显微镜和扫描电子显微镜(SEM)进行元素分析。我们还对涂层种植体进行了表面粗糙度测量,以突出可能显著影响骨-种植体界面类型和强度的差异,从而直接影响种植体作为锚固单元的稳定性。最后,对EPD涂层对革兰氏阳性菌和革兰氏阴性菌的抑菌活性进行了测试,以评价其抗菌性能。扫描电子观察证实了微粒子和纳米粒子在所有涂层中的均匀分布。氮化钛纳米颗粒(TiNNPs)和壳聚糖层的表面粗糙度值最高。另外一层浸涂PLA层的存在提高了附着力,其对表面粗糙度的影响取决于颗粒尺寸。虽然涂层的抗菌性能显示出良好的效果,但实现涂层与植入物的最佳粘附仍然是一个需要进一步发展的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrophoretic Coatings for Orthodontic Implants: Evaluation of Surface Properties, Adhesion, and Antibacterial Activity in Simulated Implantation Trials.

In this study, the properties of electrophoretically deposited (EPD) coatings on orthodontic implants made from Ti-6Al-4V alloy were evaluated during simulated implantation trials on animal bones. Three types of chitosan-based coatings were prepared using EPD: titanium nitride microparticles (TiNPs), titanium nitride nanoparticles (TiNNPs), and boron nitride particles (BNPs). Each of these coatings was also modified by adding a polylactic acid (PLA) layer using a dip-coating technique to compare their properties with and without this additional layer. The coatings were analysed using optical microscopy, confocal microscopy, and scanning electron microscopy (SEM) with elemental analysis. Surface roughness measurements of the coated implants were also conducted to highlight differences that could significantly influence the type and strength of the bone-implant interface, directly affecting the stability of the implant as an anchorage unit. Eventually, to evaluate the antibacterial properties of the EPD coatings, their antibacterial activity against both Gram-positive and Gram-negative bacteria strains was tested. Scanning electron observations confirmed the homogenous distribution of micro- and nanoparticles in all coatings. The highest surface roughness values were observed in layers containing titanium nitride nanoparticles (TiNNPs) and chitosan. The presence of an additional dip-coating PLA layer improved the adhesion, and its effect on the surface roughness depended on the particle size. While the antibacterial properties of the coatings show promising results, achieving optimal adhesion of the coatings to implants remains a challenge that requires further development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信