Judy S. Choi , Mehnaz Pervin , James E. Vince , Arpeeta Sharma , Judy B. de Haan
{"title":"靶向NLRP3炎性小体-气皮蛋白D轴对抗心血管疾病","authors":"Judy S. Choi , Mehnaz Pervin , James E. Vince , Arpeeta Sharma , Judy B. de Haan","doi":"10.1016/j.yjmcc.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular disease remains a leading global cause of mortality, with inflammation playing a crucial role in driving its pathology. Despite advancements in cardiovascular disease management, current treatment options primarily address risk factors and symptoms rather than underlying disease mechanisms. Among the key mechanistic drivers are the NLRP3 multiprotein inflammasome complexes of the innate immune system, which are activated in response to cellular stress or injury. One of the key downstream effectors of NLRP3 activation is gasdermin D, which forms pores in the plasma membrane to initiate pyroptotic cell death, leading to the release of pro-inflammatory cytokines. This review will highlight the role of NLRP3 inflammasome activation and gasdermin D-mediated pyroptosis in driving cardiovascular diseases, including atherosclerosis, myocardial infarction, ischemic stroke and diabetic cardiomyopathy. It will also identify recent innovative therapeutic approaches that target the NLRP3 inflammasome-gasdermin D axis, which are currently being evaluated in preclinical studies and clinical trials.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"209 ","pages":"Pages 1-14"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting the NLRP3 Inflammasome-Gasdermin D Axis to Combat Cardiovascular Diseases\",\"authors\":\"Judy S. Choi , Mehnaz Pervin , James E. Vince , Arpeeta Sharma , Judy B. de Haan\",\"doi\":\"10.1016/j.yjmcc.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardiovascular disease remains a leading global cause of mortality, with inflammation playing a crucial role in driving its pathology. Despite advancements in cardiovascular disease management, current treatment options primarily address risk factors and symptoms rather than underlying disease mechanisms. Among the key mechanistic drivers are the NLRP3 multiprotein inflammasome complexes of the innate immune system, which are activated in response to cellular stress or injury. One of the key downstream effectors of NLRP3 activation is gasdermin D, which forms pores in the plasma membrane to initiate pyroptotic cell death, leading to the release of pro-inflammatory cytokines. This review will highlight the role of NLRP3 inflammasome activation and gasdermin D-mediated pyroptosis in driving cardiovascular diseases, including atherosclerosis, myocardial infarction, ischemic stroke and diabetic cardiomyopathy. It will also identify recent innovative therapeutic approaches that target the NLRP3 inflammasome-gasdermin D axis, which are currently being evaluated in preclinical studies and clinical trials.</div></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"209 \",\"pages\":\"Pages 1-14\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282825001750\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825001750","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Targeting the NLRP3 Inflammasome-Gasdermin D Axis to Combat Cardiovascular Diseases
Cardiovascular disease remains a leading global cause of mortality, with inflammation playing a crucial role in driving its pathology. Despite advancements in cardiovascular disease management, current treatment options primarily address risk factors and symptoms rather than underlying disease mechanisms. Among the key mechanistic drivers are the NLRP3 multiprotein inflammasome complexes of the innate immune system, which are activated in response to cellular stress or injury. One of the key downstream effectors of NLRP3 activation is gasdermin D, which forms pores in the plasma membrane to initiate pyroptotic cell death, leading to the release of pro-inflammatory cytokines. This review will highlight the role of NLRP3 inflammasome activation and gasdermin D-mediated pyroptosis in driving cardiovascular diseases, including atherosclerosis, myocardial infarction, ischemic stroke and diabetic cardiomyopathy. It will also identify recent innovative therapeutic approaches that target the NLRP3 inflammasome-gasdermin D axis, which are currently being evaluated in preclinical studies and clinical trials.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.