设计参数对种植体基台性能影响的研究综述。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Vladimir Prpic, Petar Kosec, Stanko Skec, Amir Catic
{"title":"设计参数对种植体基台性能影响的研究综述。","authors":"Vladimir Prpic, Petar Kosec, Stanko Skec, Amir Catic","doi":"10.3390/jfb16090342","DOIUrl":null,"url":null,"abstract":"<p><p>Implant abutments serve as the critical interface between dental implants and prosthodontic restorations, playing a central role in the functional and aesthetic success of implant-supported rehabilitations. With the development of CAD/CAM technologies, dental implantology has experienced a significant transformation. The latest and still unexplored field of science includes an advanced algorithm-driven process known as generative design. Generally, generative design is used to investigate a broad spectrum of design alternatives that satisfy predetermined criteria established by a designer. Prior to the application of generative design, it is essential to define the key parameters that influence the optimization of the designed object's configuration, such as a hybrid implant abutment. A bibliographic search was performed using PubMed and Scopus databases to identify relevant studies published up to 1 July 2025. Studies that investigated transmucosal and prosthodontic height of implant abutments were selected for inclusion. Only 13 studies met inclusion criteria and were further analyzed. Included studies showed the importance of transmucosal and prosthodontic height of implant abutments in order to reduce possible complications. The review highlights the importance of optimizing the transmucosal and transgingival heights of implant abutments. For predictable biological and mechanical outcomes, both dimensions should be at least 2 mm. The obtained parameter values will be used to create the initial parametric model, which will then be utilized in the generative design process of hybrid implant abutments.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Design Parameters on Implant Abutment Performance: A Scoping Review.\",\"authors\":\"Vladimir Prpic, Petar Kosec, Stanko Skec, Amir Catic\",\"doi\":\"10.3390/jfb16090342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implant abutments serve as the critical interface between dental implants and prosthodontic restorations, playing a central role in the functional and aesthetic success of implant-supported rehabilitations. With the development of CAD/CAM technologies, dental implantology has experienced a significant transformation. The latest and still unexplored field of science includes an advanced algorithm-driven process known as generative design. Generally, generative design is used to investigate a broad spectrum of design alternatives that satisfy predetermined criteria established by a designer. Prior to the application of generative design, it is essential to define the key parameters that influence the optimization of the designed object's configuration, such as a hybrid implant abutment. A bibliographic search was performed using PubMed and Scopus databases to identify relevant studies published up to 1 July 2025. Studies that investigated transmucosal and prosthodontic height of implant abutments were selected for inclusion. Only 13 studies met inclusion criteria and were further analyzed. Included studies showed the importance of transmucosal and prosthodontic height of implant abutments in order to reduce possible complications. The review highlights the importance of optimizing the transmucosal and transgingival heights of implant abutments. For predictable biological and mechanical outcomes, both dimensions should be at least 2 mm. The obtained parameter values will be used to create the initial parametric model, which will then be utilized in the generative design process of hybrid implant abutments.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090342\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090342","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

种植基台作为牙种植体和修复体之间的关键接口,在种植体支持康复的功能和美学成功中起着核心作用。随着CAD/CAM技术的发展,牙种植学发生了重大转变。最新和尚未开发的科学领域包括一种先进的算法驱动的过程,称为生成设计。一般来说,生成式设计用于研究满足设计师预先确定的标准的广泛的设计选择。在应用生成设计之前,必须定义影响被设计对象配置优化的关键参数,例如混合种植体基台。使用PubMed和Scopus数据库进行书目检索,以确定截至2025年7月1日发表的相关研究。研究包括了经黏膜和种植体基台的修复高度。只有13项研究符合纳入标准并被进一步分析。纳入的研究表明,为了减少可能的并发症,种植基台的跨粘膜和修复高度非常重要。这篇综述强调了优化种植基台的跨粘膜和跨龈高度的重要性。对于可预测的生物和机械结果,两个尺寸应至少为2mm。获得的参数值将用于创建初始参数模型,然后将该模型用于混合种植基台的生成设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Design Parameters on Implant Abutment Performance: A Scoping Review.

Implant abutments serve as the critical interface between dental implants and prosthodontic restorations, playing a central role in the functional and aesthetic success of implant-supported rehabilitations. With the development of CAD/CAM technologies, dental implantology has experienced a significant transformation. The latest and still unexplored field of science includes an advanced algorithm-driven process known as generative design. Generally, generative design is used to investigate a broad spectrum of design alternatives that satisfy predetermined criteria established by a designer. Prior to the application of generative design, it is essential to define the key parameters that influence the optimization of the designed object's configuration, such as a hybrid implant abutment. A bibliographic search was performed using PubMed and Scopus databases to identify relevant studies published up to 1 July 2025. Studies that investigated transmucosal and prosthodontic height of implant abutments were selected for inclusion. Only 13 studies met inclusion criteria and were further analyzed. Included studies showed the importance of transmucosal and prosthodontic height of implant abutments in order to reduce possible complications. The review highlights the importance of optimizing the transmucosal and transgingival heights of implant abutments. For predictable biological and mechanical outcomes, both dimensions should be at least 2 mm. The obtained parameter values will be used to create the initial parametric model, which will then be utilized in the generative design process of hybrid implant abutments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信