Francesco Antonio Veneziano, Flavio Angelo Gioia, Francesco Gentile
{"title":"冠状动脉疾病的PET/CT和PET/MR混合:临床医生的最新进展,对人工智能引导整合的见解。","authors":"Francesco Antonio Veneziano, Flavio Angelo Gioia, Francesco Gentile","doi":"10.3390/jcdd12090338","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MR) have emerged as powerful and versatile tools for the comprehensive assessment of coronary artery disease (CAD). By combining anatomical and functional information in a single examination, these modalities offer complementary insights that significantly enhance diagnostic accuracy and support clinical decision-making. This is particularly relevant in complex clinical scenarios, such as multivessel disease, balanced ischemia, or suspected microvascular dysfunction, where conventional imaging may be inconclusive. This review aims to provide clinicians with an up-to-date summary of the principles, technical considerations, and clinical applications of hybrid PET/CT and PET/MR in CAD. Here, we describe how these techniques can improve the evaluation of myocardial perfusion, coronary plaque characteristics, and ischemic burden. Advantages such as improved sensitivity, spatial resolution, and quantification capabilities are discussed alongside limitations including cost, radiation exposure, availability, and workflow challenges. A dedicated focus is given to the emerging role of artificial intelligence (AI), which is increasingly being integrated to optimize image acquisition, fusion processes, and interpretation. AI has the potential to streamline hybrid imaging and promote a more personalized and efficient management of CAD. Finally, we outline future directions in the field, including novel radiotracers, automated quantitative tools, and the expanding use of hybrid imaging to guide patient selection and therapeutic decisions, particularly in revascularization strategies.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration.\",\"authors\":\"Francesco Antonio Veneziano, Flavio Angelo Gioia, Francesco Gentile\",\"doi\":\"10.3390/jcdd12090338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MR) have emerged as powerful and versatile tools for the comprehensive assessment of coronary artery disease (CAD). By combining anatomical and functional information in a single examination, these modalities offer complementary insights that significantly enhance diagnostic accuracy and support clinical decision-making. This is particularly relevant in complex clinical scenarios, such as multivessel disease, balanced ischemia, or suspected microvascular dysfunction, where conventional imaging may be inconclusive. This review aims to provide clinicians with an up-to-date summary of the principles, technical considerations, and clinical applications of hybrid PET/CT and PET/MR in CAD. Here, we describe how these techniques can improve the evaluation of myocardial perfusion, coronary plaque characteristics, and ischemic burden. Advantages such as improved sensitivity, spatial resolution, and quantification capabilities are discussed alongside limitations including cost, radiation exposure, availability, and workflow challenges. A dedicated focus is given to the emerging role of artificial intelligence (AI), which is increasingly being integrated to optimize image acquisition, fusion processes, and interpretation. AI has the potential to streamline hybrid imaging and promote a more personalized and efficient management of CAD. Finally, we outline future directions in the field, including novel radiotracers, automated quantitative tools, and the expanding use of hybrid imaging to guide patient selection and therapeutic decisions, particularly in revascularization strategies.</p>\",\"PeriodicalId\":15197,\"journal\":{\"name\":\"Journal of Cardiovascular Development and Disease\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Development and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jcdd12090338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12090338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration.
Imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MR) have emerged as powerful and versatile tools for the comprehensive assessment of coronary artery disease (CAD). By combining anatomical and functional information in a single examination, these modalities offer complementary insights that significantly enhance diagnostic accuracy and support clinical decision-making. This is particularly relevant in complex clinical scenarios, such as multivessel disease, balanced ischemia, or suspected microvascular dysfunction, where conventional imaging may be inconclusive. This review aims to provide clinicians with an up-to-date summary of the principles, technical considerations, and clinical applications of hybrid PET/CT and PET/MR in CAD. Here, we describe how these techniques can improve the evaluation of myocardial perfusion, coronary plaque characteristics, and ischemic burden. Advantages such as improved sensitivity, spatial resolution, and quantification capabilities are discussed alongside limitations including cost, radiation exposure, availability, and workflow challenges. A dedicated focus is given to the emerging role of artificial intelligence (AI), which is increasingly being integrated to optimize image acquisition, fusion processes, and interpretation. AI has the potential to streamline hybrid imaging and promote a more personalized and efficient management of CAD. Finally, we outline future directions in the field, including novel radiotracers, automated quantitative tools, and the expanding use of hybrid imaging to guide patient selection and therapeutic decisions, particularly in revascularization strategies.