{"title":"羟基磷灰石在牙科中的再矿化和脱敏潜能:近期临床证据的叙述性回顾。","authors":"Jusef Naim, Sinan Sen","doi":"10.3390/jfb16090325","DOIUrl":null,"url":null,"abstract":"<p><p>Although caries is declining in industrialized countries, early childhood caries and molar-incisor hypomineralization (MIH) remain clinically relevant. To meet the demand for effective and well-tolerated preventive strategies, hydroxyapatite (HAp) has gained attention as a biocompatible, fluoride-free agent. A structured narrative review was conducted to evaluate recent clinical evidence on the use of HAp. A PubMed search identified clinical trials from the past five years that investigated HAp-based products. Studies were included if they reported clinical outcomes related to remineralization, caries prevention, or desensitization. Fifteen clinical studies met the inclusion criteria. HAp seems to be a safe and effective alternative to flouride, especially for children or individuals at risk of overexposure. While both agents show similar efficacy in caries prevention, HAp may offer additional advantages in managing hypersensitivity and MIH. Compared to other remineralizing agents, such as calcium sodium phosphosilicate, HAp demonstrated comparable efficacy. Combination therapies show the most promising results. Future research should explore synergies of active ingredients and include standardized long-term studies to substantiate the clinical relevance of HAp.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470856/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Remineralizing and Desensitizing Potential of Hydroxyapatite in Dentistry: A Narrative Review of Recent Clinical Evidence.\",\"authors\":\"Jusef Naim, Sinan Sen\",\"doi\":\"10.3390/jfb16090325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although caries is declining in industrialized countries, early childhood caries and molar-incisor hypomineralization (MIH) remain clinically relevant. To meet the demand for effective and well-tolerated preventive strategies, hydroxyapatite (HAp) has gained attention as a biocompatible, fluoride-free agent. A structured narrative review was conducted to evaluate recent clinical evidence on the use of HAp. A PubMed search identified clinical trials from the past five years that investigated HAp-based products. Studies were included if they reported clinical outcomes related to remineralization, caries prevention, or desensitization. Fifteen clinical studies met the inclusion criteria. HAp seems to be a safe and effective alternative to flouride, especially for children or individuals at risk of overexposure. While both agents show similar efficacy in caries prevention, HAp may offer additional advantages in managing hypersensitivity and MIH. Compared to other remineralizing agents, such as calcium sodium phosphosilicate, HAp demonstrated comparable efficacy. Combination therapies show the most promising results. Future research should explore synergies of active ingredients and include standardized long-term studies to substantiate the clinical relevance of HAp.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090325\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090325","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Remineralizing and Desensitizing Potential of Hydroxyapatite in Dentistry: A Narrative Review of Recent Clinical Evidence.
Although caries is declining in industrialized countries, early childhood caries and molar-incisor hypomineralization (MIH) remain clinically relevant. To meet the demand for effective and well-tolerated preventive strategies, hydroxyapatite (HAp) has gained attention as a biocompatible, fluoride-free agent. A structured narrative review was conducted to evaluate recent clinical evidence on the use of HAp. A PubMed search identified clinical trials from the past five years that investigated HAp-based products. Studies were included if they reported clinical outcomes related to remineralization, caries prevention, or desensitization. Fifteen clinical studies met the inclusion criteria. HAp seems to be a safe and effective alternative to flouride, especially for children or individuals at risk of overexposure. While both agents show similar efficacy in caries prevention, HAp may offer additional advantages in managing hypersensitivity and MIH. Compared to other remineralizing agents, such as calcium sodium phosphosilicate, HAp demonstrated comparable efficacy. Combination therapies show the most promising results. Future research should explore synergies of active ingredients and include standardized long-term studies to substantiate the clinical relevance of HAp.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.