在pdgfrb相关颅缝闭锁小鼠模型中,Runx2单倍不足恢复颅缝。

IF 3.2 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eri Ogawa, Tomona Oikawa, Shinya Ayabe, Tomoru Miwa, Seiya Mizuno, Taiki Nozaki, Kenjiro Kosaki, Atsushi Yoshiki, Masaru Tamura, Toshiki Takenouchi
{"title":"在pdgfrb相关颅缝闭锁小鼠模型中,Runx2单倍不足恢复颅缝。","authors":"Eri Ogawa, Tomona Oikawa, Shinya Ayabe, Tomoru Miwa, Seiya Mizuno, Taiki Nozaki, Kenjiro Kosaki, Atsushi Yoshiki, Masaru Tamura, Toshiki Takenouchi","doi":"10.1093/hmg/ddaf148","DOIUrl":null,"url":null,"abstract":"<p><p>Syndromic forms of craniosynostosis occur as a result of dysregulation of various molecular signaling cascades. In humans, a specific gain-of-function mutation (W566R) in PDGFRB causes a distinctive overgrowth syndrome (OMIM # 616592). Affected individuals exhibit distinctive facial features and craniosynostosis. Using CRISPR/Cas9 gene editing, we generated a mouse model carrying the same pathogenic variant of PDGFRB. The Pdgfrb+/W565R mice exhibited craniosynostosis with skull-base malformation: thus, we successfully recapitulated the human disease phenotype. In humans, haploinsufficiency of RUNX2, a critical transcription factor in osteogenesis, results in defects of the skull and clavicles due to insufficient membranous ossification. Such phenotypes have been well reproduced in Runx2+/- mice. To delineate the molecular mechanisms underlying the development of Pdgfrb-related craniosynostosis, we crossed the Pdgfrb+/W565R mice with Runx2+/- mice. It is noteworthy that the double- mutant mice, i.e. Pdgfrb+/W565R  Runx2+/- mice, exhibited near complete restoration of the cranial sutures and skull base. The present observation provides in vivo evidence that overactivation of Pdgfrb signaling leads to craniosynostosis through the effect of Runx2. The phenotypic reversal of the cranial structures suggests that modification of the Pdgfrb-Runx2 signaling cascade might offer a novel therapeutic opportunity for craniosynostosis.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haploinsufficiency of Runx2 restores the cranial sutures in a mouse model of Pdgfrb-related craniosynostosis.\",\"authors\":\"Eri Ogawa, Tomona Oikawa, Shinya Ayabe, Tomoru Miwa, Seiya Mizuno, Taiki Nozaki, Kenjiro Kosaki, Atsushi Yoshiki, Masaru Tamura, Toshiki Takenouchi\",\"doi\":\"10.1093/hmg/ddaf148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Syndromic forms of craniosynostosis occur as a result of dysregulation of various molecular signaling cascades. In humans, a specific gain-of-function mutation (W566R) in PDGFRB causes a distinctive overgrowth syndrome (OMIM # 616592). Affected individuals exhibit distinctive facial features and craniosynostosis. Using CRISPR/Cas9 gene editing, we generated a mouse model carrying the same pathogenic variant of PDGFRB. The Pdgfrb+/W565R mice exhibited craniosynostosis with skull-base malformation: thus, we successfully recapitulated the human disease phenotype. In humans, haploinsufficiency of RUNX2, a critical transcription factor in osteogenesis, results in defects of the skull and clavicles due to insufficient membranous ossification. Such phenotypes have been well reproduced in Runx2+/- mice. To delineate the molecular mechanisms underlying the development of Pdgfrb-related craniosynostosis, we crossed the Pdgfrb+/W565R mice with Runx2+/- mice. It is noteworthy that the double- mutant mice, i.e. Pdgfrb+/W565R  Runx2+/- mice, exhibited near complete restoration of the cranial sutures and skull base. The present observation provides in vivo evidence that overactivation of Pdgfrb signaling leads to craniosynostosis through the effect of Runx2. The phenotypic reversal of the cranial structures suggests that modification of the Pdgfrb-Runx2 signaling cascade might offer a novel therapeutic opportunity for craniosynostosis.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf148\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

颅缝闭锁的综合征形式是各种分子信号级联失调的结果。在人类中,PDGFRB中特定的功能获得突变(W566R)导致独特的过度生长综合征(OMIM # 616592)。受影响的个体表现出明显的面部特征和颅缝闭合。利用CRISPR/Cas9基因编辑技术,我们生成了携带相同致病PDGFRB变异的小鼠模型。Pdgfrb+/W565R小鼠表现出颅缝闭合伴颅底畸形:因此,我们成功再现了人类疾病的表型。在人类中,RUNX2(成骨过程中一个关键的转录因子)的单倍不足会导致由于膜性骨化不足而导致颅骨和锁骨的缺陷。这些表型在Runx2+/-小鼠中得到了很好的再现。为了描述Pdgfrb相关颅缝闭锁发生的分子机制,我们将Pdgfrb+/W565R小鼠与Runx2+/-小鼠杂交。值得注意的是,双突变小鼠,即Pdgfrb+/W565R Runx2+/-小鼠,显示出颅骨缝合和颅底的几乎完全恢复。本研究为Pdgfrb信号的过度激活通过Runx2的作用导致颅缝闭锁提供了体内证据。颅结构的表型逆转表明,Pdgfrb-Runx2信号级联的修饰可能为颅缝闭闭提供新的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Haploinsufficiency of Runx2 restores the cranial sutures in a mouse model of Pdgfrb-related craniosynostosis.

Syndromic forms of craniosynostosis occur as a result of dysregulation of various molecular signaling cascades. In humans, a specific gain-of-function mutation (W566R) in PDGFRB causes a distinctive overgrowth syndrome (OMIM # 616592). Affected individuals exhibit distinctive facial features and craniosynostosis. Using CRISPR/Cas9 gene editing, we generated a mouse model carrying the same pathogenic variant of PDGFRB. The Pdgfrb+/W565R mice exhibited craniosynostosis with skull-base malformation: thus, we successfully recapitulated the human disease phenotype. In humans, haploinsufficiency of RUNX2, a critical transcription factor in osteogenesis, results in defects of the skull and clavicles due to insufficient membranous ossification. Such phenotypes have been well reproduced in Runx2+/- mice. To delineate the molecular mechanisms underlying the development of Pdgfrb-related craniosynostosis, we crossed the Pdgfrb+/W565R mice with Runx2+/- mice. It is noteworthy that the double- mutant mice, i.e. Pdgfrb+/W565R  Runx2+/- mice, exhibited near complete restoration of the cranial sutures and skull base. The present observation provides in vivo evidence that overactivation of Pdgfrb signaling leads to craniosynostosis through the effect of Runx2. The phenotypic reversal of the cranial structures suggests that modification of the Pdgfrb-Runx2 signaling cascade might offer a novel therapeutic opportunity for craniosynostosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信