K Anu, S Gayathry, C K Sneha, K Shahul, R Sayana, K Sree Theertha, Augustine Anu
{"title":"揭示蜡样芽孢杆菌菌株doms B16对可持续农业和作物生产力的多方面益处。","authors":"K Anu, S Gayathry, C K Sneha, K Shahul, R Sayana, K Sree Theertha, Augustine Anu","doi":"10.1080/15226514.2025.2559157","DOIUrl":null,"url":null,"abstract":"<p><p>The growing need for sustainable agricultural practices has prompted the exploration of microbial biotechnologies, specifically plant growth-promoting rhizobacteria (PGPR), as alternatives to chemical fertilizers and pesticides. This study focuses on <i>Bacillus cereus strain doms B16</i>, a newly isolated bacterium from the rhizosphere of black pepper plants. Our comprehensive evaluation revealed that strain B16 exhibits multiple beneficial traits such as phosphate solubilization, nitrogen fixation, siderophore production, and the synthesis of indole-3-acetic acid (IAA), which are pivotal for enhancing plant growth. The results from pot experiments show that B16 significantly improves growth parameters in mustard, green gram, and bengal gram, confirming its potential to contribute to eco-friendly agricultural practices. The strain's robustness in salt stress conditions and its ability to form biofilms further affirm its potential as a biofertilizer. These findings underscore the significance of <i>Bacillus cereus strain doms B16</i> in promoting sustainable agriculture through enhanced plant health and productivity, presenting a viable, eco-friendly alternative to conventional agricultural inputs.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the multifaceted benefits of <i>Bacillus cereus strain doms B16</i> for sustainable agriculture and crop productivity.\",\"authors\":\"K Anu, S Gayathry, C K Sneha, K Shahul, R Sayana, K Sree Theertha, Augustine Anu\",\"doi\":\"10.1080/15226514.2025.2559157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing need for sustainable agricultural practices has prompted the exploration of microbial biotechnologies, specifically plant growth-promoting rhizobacteria (PGPR), as alternatives to chemical fertilizers and pesticides. This study focuses on <i>Bacillus cereus strain doms B16</i>, a newly isolated bacterium from the rhizosphere of black pepper plants. Our comprehensive evaluation revealed that strain B16 exhibits multiple beneficial traits such as phosphate solubilization, nitrogen fixation, siderophore production, and the synthesis of indole-3-acetic acid (IAA), which are pivotal for enhancing plant growth. The results from pot experiments show that B16 significantly improves growth parameters in mustard, green gram, and bengal gram, confirming its potential to contribute to eco-friendly agricultural practices. The strain's robustness in salt stress conditions and its ability to form biofilms further affirm its potential as a biofertilizer. These findings underscore the significance of <i>Bacillus cereus strain doms B16</i> in promoting sustainable agriculture through enhanced plant health and productivity, presenting a viable, eco-friendly alternative to conventional agricultural inputs.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2559157\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2559157","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unveiling the multifaceted benefits of Bacillus cereus strain doms B16 for sustainable agriculture and crop productivity.
The growing need for sustainable agricultural practices has prompted the exploration of microbial biotechnologies, specifically plant growth-promoting rhizobacteria (PGPR), as alternatives to chemical fertilizers and pesticides. This study focuses on Bacillus cereus strain doms B16, a newly isolated bacterium from the rhizosphere of black pepper plants. Our comprehensive evaluation revealed that strain B16 exhibits multiple beneficial traits such as phosphate solubilization, nitrogen fixation, siderophore production, and the synthesis of indole-3-acetic acid (IAA), which are pivotal for enhancing plant growth. The results from pot experiments show that B16 significantly improves growth parameters in mustard, green gram, and bengal gram, confirming its potential to contribute to eco-friendly agricultural practices. The strain's robustness in salt stress conditions and its ability to form biofilms further affirm its potential as a biofertilizer. These findings underscore the significance of Bacillus cereus strain doms B16 in promoting sustainable agriculture through enhanced plant health and productivity, presenting a viable, eco-friendly alternative to conventional agricultural inputs.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.