Sabuj Chandra Sutradhar, Nipa Banik, Gazi A K M Rafiqul Bari, Jae-Ho Jeong
{"title":"基于聚合物网络的纳米凝胶和微凝胶:设计、分类、合成和在药物输送中的应用。","authors":"Sabuj Chandra Sutradhar, Nipa Banik, Gazi A K M Rafiqul Bari, Jae-Ho Jeong","doi":"10.3390/gels11090761","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer network-based nanogels (NGs) and microgels (MGs) have emerged as highly versatile platforms for advanced drug delivery, owing to their tunable architecture, biocompatibility, and responsiveness to diverse stimuli. This review presents a comprehensive and structured analysis of NG/MGs, encompassing their classification based on polymer origin, crosslinking mechanisms, composition, charge, stimuli-responsiveness, and structural architecture. We detail synthesis strategies-including inverse microemulsion and radiation-induced polymerization-and highlight key characterization techniques essential for evaluating physicochemical and functional properties. Emphasis is placed on the design-driven applications of NG/MGs in overcoming biological barriers and enabling targeted therapies, particularly in cancer, inflammation, diabetes, and viral infections. Multifunctional NGs integrating therapeutic and diagnostic capabilities (theranostics), as well as emerging platforms for immunotherapy and personalized medicine, are critically discussed. Finally, we address translational challenges and future directions, including scalable manufacturing, regulatory considerations, and integration with smart diagnostics. This review aims to serve as a foundational resource for researchers and clinicians developing next-generation NG/MG-based therapeutics.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polymer Network-Based Nanogels and Microgels: Design, Classification, Synthesis, and Applications in Drug Delivery.\",\"authors\":\"Sabuj Chandra Sutradhar, Nipa Banik, Gazi A K M Rafiqul Bari, Jae-Ho Jeong\",\"doi\":\"10.3390/gels11090761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymer network-based nanogels (NGs) and microgels (MGs) have emerged as highly versatile platforms for advanced drug delivery, owing to their tunable architecture, biocompatibility, and responsiveness to diverse stimuli. This review presents a comprehensive and structured analysis of NG/MGs, encompassing their classification based on polymer origin, crosslinking mechanisms, composition, charge, stimuli-responsiveness, and structural architecture. We detail synthesis strategies-including inverse microemulsion and radiation-induced polymerization-and highlight key characterization techniques essential for evaluating physicochemical and functional properties. Emphasis is placed on the design-driven applications of NG/MGs in overcoming biological barriers and enabling targeted therapies, particularly in cancer, inflammation, diabetes, and viral infections. Multifunctional NGs integrating therapeutic and diagnostic capabilities (theranostics), as well as emerging platforms for immunotherapy and personalized medicine, are critically discussed. Finally, we address translational challenges and future directions, including scalable manufacturing, regulatory considerations, and integration with smart diagnostics. This review aims to serve as a foundational resource for researchers and clinicians developing next-generation NG/MG-based therapeutics.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11090761\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090761","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Polymer Network-Based Nanogels and Microgels: Design, Classification, Synthesis, and Applications in Drug Delivery.
Polymer network-based nanogels (NGs) and microgels (MGs) have emerged as highly versatile platforms for advanced drug delivery, owing to their tunable architecture, biocompatibility, and responsiveness to diverse stimuli. This review presents a comprehensive and structured analysis of NG/MGs, encompassing their classification based on polymer origin, crosslinking mechanisms, composition, charge, stimuli-responsiveness, and structural architecture. We detail synthesis strategies-including inverse microemulsion and radiation-induced polymerization-and highlight key characterization techniques essential for evaluating physicochemical and functional properties. Emphasis is placed on the design-driven applications of NG/MGs in overcoming biological barriers and enabling targeted therapies, particularly in cancer, inflammation, diabetes, and viral infections. Multifunctional NGs integrating therapeutic and diagnostic capabilities (theranostics), as well as emerging platforms for immunotherapy and personalized medicine, are critically discussed. Finally, we address translational challenges and future directions, including scalable manufacturing, regulatory considerations, and integration with smart diagnostics. This review aims to serve as a foundational resource for researchers and clinicians developing next-generation NG/MG-based therapeutics.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.