用Diels-Alder化学交联的cmc基可注射水凝胶用于伤口愈合。

IF 5.3 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-08-23 DOI:10.3390/gels11090674
Israr Ali, Urwa Shahid, Seon-Hwa Kim, Suganthy Ramamoorthy, Won Han, Minseon Kim, Vishal Gavande, Won-Ki Lee, Joong Ho Shin, Sang-Hyug Park, Kwon Taek Lim
{"title":"用Diels-Alder化学交联的cmc基可注射水凝胶用于伤口愈合。","authors":"Israr Ali, Urwa Shahid, Seon-Hwa Kim, Suganthy Ramamoorthy, Won Han, Minseon Kim, Vishal Gavande, Won-Ki Lee, Joong Ho Shin, Sang-Hyug Park, Kwon Taek Lim","doi":"10.3390/gels11090674","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic wounds disrupt natural healing and tissue regeneration, posing a major challenge in healthcare. Conventional wound care often lacks effective drug delivery, tissue integration, infection control, and patient comfort. However, injectable hydrogels offer localized, minimally invasive treatment and conform to irregular wound shapes. This study presents carboxymethyl cellulose (CMC)-based injectable hydrogels, prepared via Diels-Alder click chemistry using highly furan functionalized CMC (45%) and a bismaleimide crosslinker. The hydrogels showed a rapid gelation time (<490 s) under physiological conditions. The hydrogel exhibited favorable physicochemical and mechanical properties, as well as sustained curcumin release (∼80% in 5 days). In vitro studies confirmed excellent biocompatibility with NIH3T3 fibroblasts and notable antibacterial activity against <i>E. coli</i>, supporting its potential for wound healing applications.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469658/pdf/","citationCount":"0","resultStr":"{\"title\":\"CMC-Based Injectable Hydrogels Crosslinked by Diels-Alder Chemistry for Wound Healing Applications.\",\"authors\":\"Israr Ali, Urwa Shahid, Seon-Hwa Kim, Suganthy Ramamoorthy, Won Han, Minseon Kim, Vishal Gavande, Won-Ki Lee, Joong Ho Shin, Sang-Hyug Park, Kwon Taek Lim\",\"doi\":\"10.3390/gels11090674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic wounds disrupt natural healing and tissue regeneration, posing a major challenge in healthcare. Conventional wound care often lacks effective drug delivery, tissue integration, infection control, and patient comfort. However, injectable hydrogels offer localized, minimally invasive treatment and conform to irregular wound shapes. This study presents carboxymethyl cellulose (CMC)-based injectable hydrogels, prepared via Diels-Alder click chemistry using highly furan functionalized CMC (45%) and a bismaleimide crosslinker. The hydrogels showed a rapid gelation time (<490 s) under physiological conditions. The hydrogel exhibited favorable physicochemical and mechanical properties, as well as sustained curcumin release (∼80% in 5 days). In vitro studies confirmed excellent biocompatibility with NIH3T3 fibroblasts and notable antibacterial activity against <i>E. coli</i>, supporting its potential for wound healing applications.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11090674\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090674","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

慢性伤口破坏自然愈合和组织再生,对医疗保健构成重大挑战。传统的伤口护理往往缺乏有效的药物输送、组织整合、感染控制和患者舒适度。然而,可注射的水凝胶提供了局部的、微创的治疗,并且符合不规则的伤口形状。本研究采用高呋喃功能化CMC(45%)和双马来酰亚胺交联剂,通过Diels-Alder click化学制备羧甲基纤维素(CMC)基注射水凝胶。该水凝胶在大肠杆菌中表现出快速的凝胶化时间,支持其在伤口愈合应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CMC-Based Injectable Hydrogels Crosslinked by Diels-Alder Chemistry for Wound Healing Applications.

CMC-Based Injectable Hydrogels Crosslinked by Diels-Alder Chemistry for Wound Healing Applications.

CMC-Based Injectable Hydrogels Crosslinked by Diels-Alder Chemistry for Wound Healing Applications.

CMC-Based Injectable Hydrogels Crosslinked by Diels-Alder Chemistry for Wound Healing Applications.

Chronic wounds disrupt natural healing and tissue regeneration, posing a major challenge in healthcare. Conventional wound care often lacks effective drug delivery, tissue integration, infection control, and patient comfort. However, injectable hydrogels offer localized, minimally invasive treatment and conform to irregular wound shapes. This study presents carboxymethyl cellulose (CMC)-based injectable hydrogels, prepared via Diels-Alder click chemistry using highly furan functionalized CMC (45%) and a bismaleimide crosslinker. The hydrogels showed a rapid gelation time (<490 s) under physiological conditions. The hydrogel exhibited favorable physicochemical and mechanical properties, as well as sustained curcumin release (∼80% in 5 days). In vitro studies confirmed excellent biocompatibility with NIH3T3 fibroblasts and notable antibacterial activity against E. coli, supporting its potential for wound healing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信