María-Carmen Alfaro-Rodríguez, Fátima Vela, María-Carmen García-González, José Muñoz
{"title":"用于沙拉酱的亚麻籽纤维结构纳米乳液:加工和稳定性。","authors":"María-Carmen Alfaro-Rodríguez, Fátima Vela, María-Carmen García-González, José Muñoz","doi":"10.3390/gels11090678","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal behavior. Rotor-stator homogenization followed by microfluidization were employed to produce nanoemulgels, which were characterized using laser diffraction, multiple light scattering, and rheological measurements. The resulting systems exhibited monomodal particle size distributions with mean diameters below 220 nm. Increasing the number of microfluidizer passes from one to four led to slight reductions in particle size, although they were not statistically significant. The formulation with two passes demonstrated superior physical stability during aging studies. Rheological evaluation indicated enhanced gel-like behavior with up to three passes, whereas excessive energy input (four passes) slightly compromised structural integrity. The linear viscoelastic region decreased notably after the first pass but remained relatively stable thereafter. The two-pass nanoemulgel, identified as the optimal formulation, was further tested for thermal stability. Temperature increases (5-20 °C) led to minor decreases in viscosity and firmness, yet the structure remained thermally stable. These findings support microfluidization as an effective strategy for developing stable flaxseed fiber-based nanoemulgels, with potential applications in functional food systems.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470095/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flaxseed Fiber-Structured Nanoemulgels for Salad Dressing Applications: Processing and Stability.\",\"authors\":\"María-Carmen Alfaro-Rodríguez, Fátima Vela, María-Carmen García-González, José Muñoz\",\"doi\":\"10.3390/gels11090678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal behavior. Rotor-stator homogenization followed by microfluidization were employed to produce nanoemulgels, which were characterized using laser diffraction, multiple light scattering, and rheological measurements. The resulting systems exhibited monomodal particle size distributions with mean diameters below 220 nm. Increasing the number of microfluidizer passes from one to four led to slight reductions in particle size, although they were not statistically significant. The formulation with two passes demonstrated superior physical stability during aging studies. Rheological evaluation indicated enhanced gel-like behavior with up to three passes, whereas excessive energy input (four passes) slightly compromised structural integrity. The linear viscoelastic region decreased notably after the first pass but remained relatively stable thereafter. The two-pass nanoemulgel, identified as the optimal formulation, was further tested for thermal stability. Temperature increases (5-20 °C) led to minor decreases in viscosity and firmness, yet the structure remained thermally stable. These findings support microfluidization as an effective strategy for developing stable flaxseed fiber-based nanoemulgels, with potential applications in functional food systems.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11090678\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090678","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Flaxseed Fiber-Structured Nanoemulgels for Salad Dressing Applications: Processing and Stability.
This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal behavior. Rotor-stator homogenization followed by microfluidization were employed to produce nanoemulgels, which were characterized using laser diffraction, multiple light scattering, and rheological measurements. The resulting systems exhibited monomodal particle size distributions with mean diameters below 220 nm. Increasing the number of microfluidizer passes from one to four led to slight reductions in particle size, although they were not statistically significant. The formulation with two passes demonstrated superior physical stability during aging studies. Rheological evaluation indicated enhanced gel-like behavior with up to three passes, whereas excessive energy input (four passes) slightly compromised structural integrity. The linear viscoelastic region decreased notably after the first pass but remained relatively stable thereafter. The two-pass nanoemulgel, identified as the optimal formulation, was further tested for thermal stability. Temperature increases (5-20 °C) led to minor decreases in viscosity and firmness, yet the structure remained thermally stable. These findings support microfluidization as an effective strategy for developing stable flaxseed fiber-based nanoemulgels, with potential applications in functional food systems.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.