{"title":"基于壳聚糖的纳米凝胶在现代药物递送中的应用:重点是蛋白质和基因应用。","authors":"Muhammet Davut Arpa, Fatma Julide Akbuğa","doi":"10.3390/gels11090735","DOIUrl":null,"url":null,"abstract":"<p><p>Nanogels have attracted significant attention in recent years due to their high biocompatibility, controlled release capacity, sensitivity to environmental stimuli, and targeted transport characteristics as drug delivery systems. Chitosan, a natural polysaccharide, is a biopolymer widely used in nanogel formulations due to its positively charged structure, biodegradability, and modifiable functional groups. In this review, the therapeutic applications of chitosan-based nanogels are discussed thoroughly, especially emphasizing in the areas of protein/peptide, antigen, and gene transport. Production methods, chemical modification strategies, transport mechanisms to target cells, and the biological activities of these systems have been evaluated. Chitosan nanogels are promising carrier systems in wide range of areas, including gene therapy, immunotherapy, and the delivery of biological agents, owing to their significant characteristics such as intracellular targeting, endosomal escape, and sustained release. Further studies might enable the translation of these systems into clinical applications.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chitosan-Based Nanogels in Modern Drug Delivery: Focus on Protein and Gene Applications.\",\"authors\":\"Muhammet Davut Arpa, Fatma Julide Akbuğa\",\"doi\":\"10.3390/gels11090735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanogels have attracted significant attention in recent years due to their high biocompatibility, controlled release capacity, sensitivity to environmental stimuli, and targeted transport characteristics as drug delivery systems. Chitosan, a natural polysaccharide, is a biopolymer widely used in nanogel formulations due to its positively charged structure, biodegradability, and modifiable functional groups. In this review, the therapeutic applications of chitosan-based nanogels are discussed thoroughly, especially emphasizing in the areas of protein/peptide, antigen, and gene transport. Production methods, chemical modification strategies, transport mechanisms to target cells, and the biological activities of these systems have been evaluated. Chitosan nanogels are promising carrier systems in wide range of areas, including gene therapy, immunotherapy, and the delivery of biological agents, owing to their significant characteristics such as intracellular targeting, endosomal escape, and sustained release. Further studies might enable the translation of these systems into clinical applications.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11090735\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090735","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Chitosan-Based Nanogels in Modern Drug Delivery: Focus on Protein and Gene Applications.
Nanogels have attracted significant attention in recent years due to their high biocompatibility, controlled release capacity, sensitivity to environmental stimuli, and targeted transport characteristics as drug delivery systems. Chitosan, a natural polysaccharide, is a biopolymer widely used in nanogel formulations due to its positively charged structure, biodegradability, and modifiable functional groups. In this review, the therapeutic applications of chitosan-based nanogels are discussed thoroughly, especially emphasizing in the areas of protein/peptide, antigen, and gene transport. Production methods, chemical modification strategies, transport mechanisms to target cells, and the biological activities of these systems have been evaluated. Chitosan nanogels are promising carrier systems in wide range of areas, including gene therapy, immunotherapy, and the delivery of biological agents, owing to their significant characteristics such as intracellular targeting, endosomal escape, and sustained release. Further studies might enable the translation of these systems into clinical applications.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.