Ning Huang, Jinsheng Sun, Jingping Liu, Kaihe Lv, Xuefei Deng, Taifeng Zhang, Yuanwei Sun, Han Yan, Delin Hou
{"title":"一种新型酰胺材料在超低温下增强钻井液的流变性和润湿性。","authors":"Ning Huang, Jinsheng Sun, Jingping Liu, Kaihe Lv, Xuefei Deng, Taifeng Zhang, Yuanwei Sun, Han Yan, Delin Hou","doi":"10.3390/gels11090687","DOIUrl":null,"url":null,"abstract":"<p><p>The ice sheet and subglacial geological environment in Antarctica have become the focus of scientific exploration. The development of Antarctic drilling technology will serve as a crucial safeguard for scientific exploration. However, the extremely ultra-low temperatures and intricate geological conditions present substantial obstacles for drilling operations in Antarctica, and the existing drilling fluid technology cannot satisfy the requirements of efficient and safe drilling. To ameliorate the wettability and rheology of ultra-low-temperature drilling fluids, a new amide material (HAS) was prepared using dodecylamine polyoxyethylene ether, azelaic acid, and <i>N</i>-ethylethylenediamine as raw materials. Experiments using infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, and contact angle indicated that the target product was successfully synthesized. Performance evaluation showed that 2% HAS could achieve a yield point of 2.5 Pa for drilling fluid at -55 °C, and it also gave the fluid superior shear-thinning characteristics and a large thixotropic loop area. This indicated that HAS significantly enhanced the rheological properties of the drilling fluid, ensuring that it can carry cuttings and ice debris. In addition, 2% HAS could also increase the colloidal rate from 8% to more than 76% at -55 °C in different base oils. Meanwhile, the colloid rate was maintained above 92.4% when the density was 0.92~0.95 g/cm<sup>3</sup>. Mechanism studies showed that HAS increased the zeta potential and decreased the particle size of organoclay. At the same time, it changed the organoclay state from a clustered state to a uniformly dispersed state, and the particle size decreased. It was found that HAS formed a weak gel grid structure through interactions between polar groups, such as amide and imino groups with organoclays particles, thus improving the rheology and wettability of drilling fluid. In addition, HAS is an environmentally friendly high-performance material.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469316/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Rheology and Wettability of Drilling Fluids at Ultra-Low Temperatures Using a Novel Amide Material.\",\"authors\":\"Ning Huang, Jinsheng Sun, Jingping Liu, Kaihe Lv, Xuefei Deng, Taifeng Zhang, Yuanwei Sun, Han Yan, Delin Hou\",\"doi\":\"10.3390/gels11090687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ice sheet and subglacial geological environment in Antarctica have become the focus of scientific exploration. The development of Antarctic drilling technology will serve as a crucial safeguard for scientific exploration. However, the extremely ultra-low temperatures and intricate geological conditions present substantial obstacles for drilling operations in Antarctica, and the existing drilling fluid technology cannot satisfy the requirements of efficient and safe drilling. To ameliorate the wettability and rheology of ultra-low-temperature drilling fluids, a new amide material (HAS) was prepared using dodecylamine polyoxyethylene ether, azelaic acid, and <i>N</i>-ethylethylenediamine as raw materials. Experiments using infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, and contact angle indicated that the target product was successfully synthesized. Performance evaluation showed that 2% HAS could achieve a yield point of 2.5 Pa for drilling fluid at -55 °C, and it also gave the fluid superior shear-thinning characteristics and a large thixotropic loop area. This indicated that HAS significantly enhanced the rheological properties of the drilling fluid, ensuring that it can carry cuttings and ice debris. In addition, 2% HAS could also increase the colloidal rate from 8% to more than 76% at -55 °C in different base oils. Meanwhile, the colloid rate was maintained above 92.4% when the density was 0.92~0.95 g/cm<sup>3</sup>. Mechanism studies showed that HAS increased the zeta potential and decreased the particle size of organoclay. At the same time, it changed the organoclay state from a clustered state to a uniformly dispersed state, and the particle size decreased. It was found that HAS formed a weak gel grid structure through interactions between polar groups, such as amide and imino groups with organoclays particles, thus improving the rheology and wettability of drilling fluid. In addition, HAS is an environmentally friendly high-performance material.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469316/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11090687\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090687","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing Rheology and Wettability of Drilling Fluids at Ultra-Low Temperatures Using a Novel Amide Material.
The ice sheet and subglacial geological environment in Antarctica have become the focus of scientific exploration. The development of Antarctic drilling technology will serve as a crucial safeguard for scientific exploration. However, the extremely ultra-low temperatures and intricate geological conditions present substantial obstacles for drilling operations in Antarctica, and the existing drilling fluid technology cannot satisfy the requirements of efficient and safe drilling. To ameliorate the wettability and rheology of ultra-low-temperature drilling fluids, a new amide material (HAS) was prepared using dodecylamine polyoxyethylene ether, azelaic acid, and N-ethylethylenediamine as raw materials. Experiments using infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, and contact angle indicated that the target product was successfully synthesized. Performance evaluation showed that 2% HAS could achieve a yield point of 2.5 Pa for drilling fluid at -55 °C, and it also gave the fluid superior shear-thinning characteristics and a large thixotropic loop area. This indicated that HAS significantly enhanced the rheological properties of the drilling fluid, ensuring that it can carry cuttings and ice debris. In addition, 2% HAS could also increase the colloidal rate from 8% to more than 76% at -55 °C in different base oils. Meanwhile, the colloid rate was maintained above 92.4% when the density was 0.92~0.95 g/cm3. Mechanism studies showed that HAS increased the zeta potential and decreased the particle size of organoclay. At the same time, it changed the organoclay state from a clustered state to a uniformly dispersed state, and the particle size decreased. It was found that HAS formed a weak gel grid structure through interactions between polar groups, such as amide and imino groups with organoclays particles, thus improving the rheology and wettability of drilling fluid. In addition, HAS is an environmentally friendly high-performance material.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.