水环境下细菌纤维素膜对亚甲基蓝染料的吸附特性

IF 5.3 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-09-10 DOI:10.3390/gels11090721
Zimu Hu, Christopher R Brewer, Austin J Pyrch, Ziyu Wang, Dhanush U Jamadgni, Wendy E Krause, Lucian A Lucia
{"title":"水环境下细菌纤维素膜对亚甲基蓝染料的吸附特性","authors":"Zimu Hu, Christopher R Brewer, Austin J Pyrch, Ziyu Wang, Dhanush U Jamadgni, Wendy E Krause, Lucian A Lucia","doi":"10.3390/gels11090721","DOIUrl":null,"url":null,"abstract":"<p><p>Water pollution has escalated to critical levels in recent years as evident by the multiplicity of contaminants found in potable water sources. A point-source major contributor is the textile industry, which discharges substantial amounts of dye into rivers and lakes. Bacterial cellulose (BC), a renewable and low-cost nanocellulose material, has emerged as a potential solution addressing dye removal from these contaminated waters. Methylene Blue (MB) was selected as a representative dye for our adsorption studies. As a baseline for evaluating efficacy, BC was dried using three different methods: freeze-drying, oven-drying, and room-temperature drying. The adsorptive behavior of these dried BC samples toward MB in an aqueous environment was evaluated. Furthermore, to elucidate the structure-property relationship of dried BC, several characterization techniques were employed. Our studies revealed that freeze-dried BC exhibited the highest initial adsorption rate, while oven-dried BC demonstrated the overall highest adsorption capacity. Moreover, the adsorption data corresponded well with pseudo-second-order and Freundlich isotherm models. This investigation provides a comprehensive understanding of how BC, dried through different methods, performs in the adsorption of MB by establishing a baseline for future research.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470013/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adsorption Characteristics of Bacterial Cellulose Membranes Toward Methylene Blue Dye in Aqueous Environment.\",\"authors\":\"Zimu Hu, Christopher R Brewer, Austin J Pyrch, Ziyu Wang, Dhanush U Jamadgni, Wendy E Krause, Lucian A Lucia\",\"doi\":\"10.3390/gels11090721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water pollution has escalated to critical levels in recent years as evident by the multiplicity of contaminants found in potable water sources. A point-source major contributor is the textile industry, which discharges substantial amounts of dye into rivers and lakes. Bacterial cellulose (BC), a renewable and low-cost nanocellulose material, has emerged as a potential solution addressing dye removal from these contaminated waters. Methylene Blue (MB) was selected as a representative dye for our adsorption studies. As a baseline for evaluating efficacy, BC was dried using three different methods: freeze-drying, oven-drying, and room-temperature drying. The adsorptive behavior of these dried BC samples toward MB in an aqueous environment was evaluated. Furthermore, to elucidate the structure-property relationship of dried BC, several characterization techniques were employed. Our studies revealed that freeze-dried BC exhibited the highest initial adsorption rate, while oven-dried BC demonstrated the overall highest adsorption capacity. Moreover, the adsorption data corresponded well with pseudo-second-order and Freundlich isotherm models. This investigation provides a comprehensive understanding of how BC, dried through different methods, performs in the adsorption of MB by establishing a baseline for future research.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470013/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11090721\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11090721","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,饮用水水源中发现的多种污染物表明,水污染已经升级到临界水平。一个点源的主要贡献者是纺织工业,它将大量染料排放到河流和湖泊中。细菌纤维素(BC)是一种可再生和低成本的纳米纤维素材料,已成为解决这些污染水中染料去除的潜在解决方案。我们选择亚甲基蓝(MB)作为吸附研究的代表性染料。作为评估疗效的基线,使用三种不同的方法干燥BC:冷冻干燥,烘箱干燥和室温干燥。研究了这些干燥的BC样品在水环境中对MB的吸附行为。此外,为了阐明干燥BC的结构-性能关系,采用了几种表征技术。我们的研究表明,冻干的BC具有最高的初始吸附速率,而烘干的BC具有最高的总体吸附容量。吸附数据与拟二阶和Freundlich等温线模型吻合较好。本研究全面了解了不同干燥方法下BC对MB的吸附情况,为今后的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption Characteristics of Bacterial Cellulose Membranes Toward Methylene Blue Dye in Aqueous Environment.

Water pollution has escalated to critical levels in recent years as evident by the multiplicity of contaminants found in potable water sources. A point-source major contributor is the textile industry, which discharges substantial amounts of dye into rivers and lakes. Bacterial cellulose (BC), a renewable and low-cost nanocellulose material, has emerged as a potential solution addressing dye removal from these contaminated waters. Methylene Blue (MB) was selected as a representative dye for our adsorption studies. As a baseline for evaluating efficacy, BC was dried using three different methods: freeze-drying, oven-drying, and room-temperature drying. The adsorptive behavior of these dried BC samples toward MB in an aqueous environment was evaluated. Furthermore, to elucidate the structure-property relationship of dried BC, several characterization techniques were employed. Our studies revealed that freeze-dried BC exhibited the highest initial adsorption rate, while oven-dried BC demonstrated the overall highest adsorption capacity. Moreover, the adsorption data corresponded well with pseudo-second-order and Freundlich isotherm models. This investigation provides a comprehensive understanding of how BC, dried through different methods, performs in the adsorption of MB by establishing a baseline for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信