龋齿数据流的模块化深度学习管道:双队列概念验证。

IF 3.1 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Ștefan Lucian Burlea, Călin Gheorghe Buzea, Florin Nedeff, Diana Mirilă, Valentin Nedeff, Maricel Agop, Dragoș Ioan Rusu, Laura Elisabeta Checheriță
{"title":"龋齿数据流的模块化深度学习管道:双队列概念验证。","authors":"Ștefan Lucian Burlea, Călin Gheorghe Buzea, Florin Nedeff, Diana Mirilă, Valentin Nedeff, Maricel Agop, Dragoș Ioan Rusu, Laura Elisabeta Checheriță","doi":"10.3390/dj13090402","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Dental caries arise from a multifactorial interplay between microbial dysbiosis, host immune responses, and enamel degradation visible on radiographs. Deep learning excels in image-based caries detection; however, integrative analyses that combine radiographic, microbiome, and transcriptomic data remain rare because public cohorts are seldom aligned. <b>Objective:</b> To determine whether three independent deep-learning pipelines-radiographic segmentation, microbiome regression, and transcriptome regression-can be reproducible implemented on non-aligned datasets, and to demonstrate the feasibility of estimating microbiome heritability in a matched twin cohort. <b>Methods:</b> (i) A U-Net with ResNet-18 encoder was trained on 100 annotated panoramic radiographs to generate a continuous caries-severity score from a predicted lesion area. (ii) Feed-forward neural networks (FNNs) were trained on supragingival 16S rRNA profiles (81 samples, 750 taxa) and gingival transcriptomes (247 samples, 54,675 probes) using randomly permuted severity scores as synthetic targets to stress-test preprocessing, training, and SHAP-based interpretability. (iii) In 49 monozygotic and 50 dizygotic twin pairs (<i>n</i> = 198), Bray-Curtis dissimilarity quantified microbial heritability, and an FNN was trained to predict recorded TotalCaries counts. <b>Results:</b> The U-Net achieved IoU = 0.564 (95% CI 0.535-0.594), precision = 0.624 (95% CI 0.583-0.667), recall = 0.877 (95% CI 0.827-0.918), and correlated with manual severity scores (r = 0.62, <i>p</i> < 0.01). The synthetic-target FNNs converged consistently but-as intended-showed no predictive power (R<sup>2</sup> ≈ -0.15 microbiome; -0.18 transcriptome). Twin analysis revealed greater microbiome similarity in monozygotic versus dizygotic pairs (0.475 ± 0.107 vs. 0.557 ± 0.117; <i>p</i> = 0.0005) and a modest correlation between salivary features and caries burden (r = 0.25). <b>Conclusions:</b> Modular deep-learning pipelines remain computationally robust and interpretable on non-aligned datasets; radiographic severity provides a transferable quantitative anchor. Twin-cohort findings confirm heritable patterns in the oral microbiome and outline a pathway toward future clinical translation once patient-matched multi-omics are available. This framework establishes a scalable, reproducible foundation for integrative caries research.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modular Deep-Learning Pipelines for Dental Caries Data Streams: A Twin-Cohort Proof-of-Concept.\",\"authors\":\"Ștefan Lucian Burlea, Călin Gheorghe Buzea, Florin Nedeff, Diana Mirilă, Valentin Nedeff, Maricel Agop, Dragoș Ioan Rusu, Laura Elisabeta Checheriță\",\"doi\":\"10.3390/dj13090402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Dental caries arise from a multifactorial interplay between microbial dysbiosis, host immune responses, and enamel degradation visible on radiographs. Deep learning excels in image-based caries detection; however, integrative analyses that combine radiographic, microbiome, and transcriptomic data remain rare because public cohorts are seldom aligned. <b>Objective:</b> To determine whether three independent deep-learning pipelines-radiographic segmentation, microbiome regression, and transcriptome regression-can be reproducible implemented on non-aligned datasets, and to demonstrate the feasibility of estimating microbiome heritability in a matched twin cohort. <b>Methods:</b> (i) A U-Net with ResNet-18 encoder was trained on 100 annotated panoramic radiographs to generate a continuous caries-severity score from a predicted lesion area. (ii) Feed-forward neural networks (FNNs) were trained on supragingival 16S rRNA profiles (81 samples, 750 taxa) and gingival transcriptomes (247 samples, 54,675 probes) using randomly permuted severity scores as synthetic targets to stress-test preprocessing, training, and SHAP-based interpretability. (iii) In 49 monozygotic and 50 dizygotic twin pairs (<i>n</i> = 198), Bray-Curtis dissimilarity quantified microbial heritability, and an FNN was trained to predict recorded TotalCaries counts. <b>Results:</b> The U-Net achieved IoU = 0.564 (95% CI 0.535-0.594), precision = 0.624 (95% CI 0.583-0.667), recall = 0.877 (95% CI 0.827-0.918), and correlated with manual severity scores (r = 0.62, <i>p</i> < 0.01). The synthetic-target FNNs converged consistently but-as intended-showed no predictive power (R<sup>2</sup> ≈ -0.15 microbiome; -0.18 transcriptome). Twin analysis revealed greater microbiome similarity in monozygotic versus dizygotic pairs (0.475 ± 0.107 vs. 0.557 ± 0.117; <i>p</i> = 0.0005) and a modest correlation between salivary features and caries burden (r = 0.25). <b>Conclusions:</b> Modular deep-learning pipelines remain computationally robust and interpretable on non-aligned datasets; radiographic severity provides a transferable quantitative anchor. Twin-cohort findings confirm heritable patterns in the oral microbiome and outline a pathway toward future clinical translation once patient-matched multi-omics are available. This framework establishes a scalable, reproducible foundation for integrative caries research.</p>\",\"PeriodicalId\":11269,\"journal\":{\"name\":\"Dentistry Journal\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dentistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dj13090402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13090402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

背景:龋齿是由微生物生态失调、宿主免疫反应和x光片上可见的牙釉质降解之间的多因素相互作用引起的。深度学习在基于图像的龋齿检测中表现出色;然而,结合放射学、微生物组和转录组数据的综合分析仍然很少,因为公共队列很少对齐。目的:确定三个独立的深度学习管道-放射学分割,微生物组回归和转录组回归-是否可以在非对齐数据集上重复实施,并证明在匹配双胞胎队列中估计微生物组遗传力的可行性。方法:(i)在100张带注释的全景x线照片上训练带有ResNet-18编码器的U-Net,从预测的病变区域生成连续的龋齿严重程度评分。(ii)前向神经网络(fnn)以牙龈上16S rRNA谱(81个样本,750个分类群)和牙龈转录组(247个样本,54,675个探针)为训练对象,使用随机排列的严重程度评分作为合成目标,进行压力测试预处理、训练和基于shap的可解释性。(iii)在49对同卵双胞胎和50对异卵双胞胎(n = 198)中,采用布雷-柯蒂斯差异量化微生物遗传率,并训练FNN预测记录的TotalCaries计数。结果:U-Net达到IoU = 0.564 (95% CI 0.535 ~ 0.594),精密度= 0.624 (95% CI 0.583 ~ 0.667),召回率= 0.877 (95% CI 0.827 ~ 0.918),并与手工严重程度评分相关(r = 0.62, p < 0.01)。合成目标fnn一致收敛,但如预期的那样没有预测能力(R2≈-0.15微生物组;-0.18转录组)。双胞胎分析显示,同卵双胞胎与异卵双胞胎的微生物组相似性更高(0.475±0.107比0.557±0.117,p = 0.0005),唾液特征与龋齿负担之间存在适度相关性(r = 0.25)。结论:模块化深度学习管道在非对齐数据集上仍然具有计算鲁棒性和可解释性;放射学严重性提供了一个可转移的定量锚。双队列研究结果证实了口腔微生物组的遗传模式,并概述了一旦患者匹配的多组学可用,未来临床翻译的途径。该框架为综合龋齿研究建立了可扩展、可重复的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Deep-Learning Pipelines for Dental Caries Data Streams: A Twin-Cohort Proof-of-Concept.

Background: Dental caries arise from a multifactorial interplay between microbial dysbiosis, host immune responses, and enamel degradation visible on radiographs. Deep learning excels in image-based caries detection; however, integrative analyses that combine radiographic, microbiome, and transcriptomic data remain rare because public cohorts are seldom aligned. Objective: To determine whether three independent deep-learning pipelines-radiographic segmentation, microbiome regression, and transcriptome regression-can be reproducible implemented on non-aligned datasets, and to demonstrate the feasibility of estimating microbiome heritability in a matched twin cohort. Methods: (i) A U-Net with ResNet-18 encoder was trained on 100 annotated panoramic radiographs to generate a continuous caries-severity score from a predicted lesion area. (ii) Feed-forward neural networks (FNNs) were trained on supragingival 16S rRNA profiles (81 samples, 750 taxa) and gingival transcriptomes (247 samples, 54,675 probes) using randomly permuted severity scores as synthetic targets to stress-test preprocessing, training, and SHAP-based interpretability. (iii) In 49 monozygotic and 50 dizygotic twin pairs (n = 198), Bray-Curtis dissimilarity quantified microbial heritability, and an FNN was trained to predict recorded TotalCaries counts. Results: The U-Net achieved IoU = 0.564 (95% CI 0.535-0.594), precision = 0.624 (95% CI 0.583-0.667), recall = 0.877 (95% CI 0.827-0.918), and correlated with manual severity scores (r = 0.62, p < 0.01). The synthetic-target FNNs converged consistently but-as intended-showed no predictive power (R2 ≈ -0.15 microbiome; -0.18 transcriptome). Twin analysis revealed greater microbiome similarity in monozygotic versus dizygotic pairs (0.475 ± 0.107 vs. 0.557 ± 0.117; p = 0.0005) and a modest correlation between salivary features and caries burden (r = 0.25). Conclusions: Modular deep-learning pipelines remain computationally robust and interpretable on non-aligned datasets; radiographic severity provides a transferable quantitative anchor. Twin-cohort findings confirm heritable patterns in the oral microbiome and outline a pathway toward future clinical translation once patient-matched multi-omics are available. This framework establishes a scalable, reproducible foundation for integrative caries research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dentistry Journal
Dentistry Journal Dentistry-Dentistry (all)
CiteScore
3.70
自引率
7.70%
发文量
213
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信